

.

.

The XF multi-function subfunctions
Name Number Function
ALENG 000 Return length of string in ALPHA.
ANUM 001 Convert string in ALPHA to numerical value in X.
AROT 002 Rotate contents of ALPHA.
ATOX 003 Convert character in ALPHA to character code in X.
CLKEYS 004 Clear all key assignments.
CLRGX 005 Clear registers as specified by X.
GETKEY 006 Get keycode depending on key pressed.
GETKEYX 007 Get keycode within time specified by X.
PASN 006 Programmable assignment.
PCLPS 009 Programmable clear programs.
POSA 010 Find position of string or character in ALPHA.
PSIZE 011 Programmable SIZE.
RCLFLAG 012 Recall the status of user flags 00-43.
REGMOVE 013 Move a block of main memory data registers.
REGSWAP 011 Swap two blocks of main memory data registers.
ΣREG? 015 Return the location of the statistical registers.
SIZE? 016 Return the current SIZE.
STOFLAG 017 Restore the status of user flags 00-43.
x<>F 018 Exchange status of user flags 0-7 with X.
XTOA 019 Convert character code in X to character in ALPHA.
X=NN? 020 Compare X with indirect Y.
X≠NN? 021 Compare X with indirect Y.
X<NN? 022 Compare X with indirect Y.
X< =NN? 023 Compare X with indirect Y.
X>NN? 024 Compare X with indirect Y.
X> =NN? 025 Compare X with indirect Y.

The HEPAX multi-function subfunctions
Name Number Function
AND 001 Logical X AND Y.
BCAT 002 Block catalog.
BCD-BIN 003 Converts number in X from BCD to binary.
BIN-BCD 004 Converts number in X from binary to BCD.
CTRAST 005 Set display contrast ("Halfnut" calculators only).
DELETE 006 Works like DELETE of the hexadecimal editor.
INSERT 007 Works like INSERT of the hexadecimal editor.
NOT 008 Complement of X.
OR 009 Logical X OR Y.
ROTYX 010 Rotates Y register X nybbles.
SHIFTYX 011 Shift Y register X bits.
XOBR 012 Logical X exclusive-or Y.
X+Y 013 Bitwise addition.
X-$ 014 Converts X register to alpha string.
Y-X 015 Bitwise subtraction.

The HEPAX Module

Volume 2
M-code Programming

 August 2010

Printed in Denmark ©VM Electronics 1988
Reprinted in Canary Islands by Diego Díaz © 2010

.

Contents

Part III: The inner secrets of the HP-41

Section 7: HP-41 internal structure 92
 HP-41 memory. 92
 User memory; System memory; User memory vs. system
 memory; Bank switching
 The operating system . . 96
 The HEPAX module. 97
 The status registers. 98
 The stack registers; The ALPHA register; Other parts of
 the status registers
 ROM block structure. . 102

Section 8: The HP-41 microprocessor. 105
 Introduction to the CPU. . 105
 More about the structure of registers 106
 The arithmetic registers (A, B, C). 107
 The storage registers (M, N, G). 108
 The address registers (PC, STK). 108
 Other registers and flags. . 109
 The KY register; The ST register and the CPU flags; The
 T register; The Pointers

Part IV: M-code programming

Section 9: Introduction to M-code. 114
 Why M-code?; How do I program in M-code?; Why doesn't
 my routine work?; CPU “bugs”; Not Manufacturer
 Supported; “Crashes”

Section 10: The M-code Instructions. 117
 The structure of M-code instructions. 117
 About jumps. . 118
 Absolute jumps; Relative jumps; Port dependent jumps
 Class 0 instructions . 120
 Parameter instructions; Special instructions; Accessing user
 memory registers
 Class 1 instructions . 126

88 Contents

 Class 2 instructions . 128
 Class 3 instructions . 130

 Section 11: M-code for peripheral units. 131
 Using the tone generator. 131
 ROM character codes. 132
 Using the display. 134
 Using the HP-82143A printer. 136
 The optical wand. 137
 Magnetic card reader. 137
 The timer. 139
 The HP-IL interface. 142

 Section 12: Developing your own ROM. 145
 Function and program names. 145
 Prompting; non programmable functions
 Selected HP-41 system subroutines. 147
 Display handling routines; Keyboard handling routines;
 Message routines; ALPHA register handling routines; Main
 memory handling routines; Return points; Miscellaneous
 routines; Using port dependent jumps
 Example of a user-developed ROM. 153

Appendices

 Messages from the HEPAX module. 158

 Function overview. 163

 Reference tables for M-code programming 166

 Hexadecimal and binary numbers. 172

 XROM numbers. 175

 Warranty and service information. 177

 Addresses of User groups. 178

 Subject Index. 180

Contents 89

List of figures
Fig. 10, Internal structure of the HP-41. 92
Fig. 11, HP-41 system memory. 94
Fig. 12, The structure of the status register 99
Fig. 13, Number register format . 100
Fig. 14, Text register format . 100
Fig. 15, ROM block structure. 102
Fig. 16, CPU register connections. 106
Fig. 17, Structure of registers. 107
Fig. 18, The internal keycodes of the HP-41 110
Fig. 19, Normal ROM characters . 133
Fig. 20, Special ROM characters . 133
Fig. 21, Halfnut special ROM characters 133
Fig. 22, Display annunciators . 134
Fig. 23, Keycodes returned by 0E50 subroutine. 149

List of tables
Table 7, Interrupt addresses. 104
Table 8, CPU registers . 105
Table 9, Register fields. 107
Table 10, CPU flags. 111
Table 11, M-code instruction classes 117
Table 12, Advantages and disadvantages of jump types 118
Table 13, Class 1 jump types . 126
Table 14, Fields used with class 2 instructions. 128
Table 15, ROM character code structure 132
Table 16, ROM character code punctuation 132
Table 17, Display handling instruction. 135
Table 18, Printer handling instructions. 136
Table 19, Structure of printer status word. 136
Table 20, Card reader handling instructions. 138
Table 21, Timer handling instructions. 141
Table 22, Structure of timer status register 141
Table 23, HP-IL interface register structure. 143
Table 24, HP-IL interface interrupt flag instructions 143
Table 25, HP-IL interface handling instructions. 144
Table 26, Function prompting . 146
Table 27, Subroutine addresses for port dependent jumps. 153
Table 28, Decimal, Hexadecimal and Binary numbers 173

.

Part III:

The inner secrets of the HP-41

Section 7:

HP-41 internal structure

The major parts of the HP-41 itself are the Central Processing Unit (the CPU,
the "brain" of the calculator), the user memory (RAM memory), the system
memory (ROM memory) and the keyboard and the display. The relation
between these parts is shown below.

Fig. 10, Internal structure of the HP-41

Note that there are two different memory areas.

HP-41 memory
Unlike an "ordinary" computer, the memory of the HP-41 is divided into two
distinct areas. These areas are known as the user memory area (main and
extended memory) and the system memory area (used for operating system,
plug-in modules, etc.).

Section 7: HP-41 internal structure 93

User memory
The HP-41 user memory consists of the up to 319 registers of main memory
and the up to 600 registers of extended memory. This is where your programs,
data, key assignments, alarms, etc. are usually stored.

The user memory is RAM memory. This means that its contents may be
changed by the user, and that the contents will be lost when power is removed
from the calculator for an extended period of time.

User memory consists of registers, each register again divided into 7 bytes of
8 bits. Each user memory register has a unique address and each byte has a
unique subaddress within the register.

To picture this, imagine a street of apartment buildings where the register
address corresponds to the street no. and the byte subaddress corresponds
to the floor.

Note that the CPU has no way of knowing if there is actually a memory
chip at a given address. To find out, it tries to store some data and then
reads the data back. If the CPU does read the same as it tried to write,
there is actual memory at that address.

In our apartment building model, this corresponds to not knowing if anybody
is home in a given apartment. To find out, we call up the apartment and
give a message. We then ask to hear our message. If the message is repeated
correctly, then there is someone home in that apartment.

There are 1024 register addresses, but some of these are used for
housekeeping, stack, ALPHA register, etc. The user is left with 919
registers of main and extended memory. Since there are only 1024
addresses, there is no way of expanding user memory further.

The first 16 registers (the lowest addresses) hold special information about
the status of the calculator. These registers are known as the status
registers and are explained in detail later in this section.

System memory
The HP-41 system memory is normally used for operating system,
peripherals like printer or card reader, and plug-in modules like the TIME
module, the MATH modules etc.

The system memory is ROM memory. This means that its contents cannot be
changed and that it will not be affected by power failure.

94 Section 7: HP-41 internal structure

System memory consists of 10-bit words. There are 65536 addresses, divided
into blocks of 4096 words. Remember that HEPAX memory is also divided in
this way. There are 16 blocks, numbered 0 through F (hexadecimal).

Block Addresses
F F000-FFFF Port 4, upper
E E000-EFFF Port 4, lower
D D000-DFFF Port 3, upper
C C000-CFFF Port 3, lower
B B000-BFFF Port 2, upper
A A000-AFFF Port 2, lower
9 9000-9FFF Port 1, upper
8 8000-8FFF Port 1, lower
7 7000-7FFF HP-IL module
6 6F00-6FFF Printer IR printer
5 5000-5FFF TIME CX system
4 4000-4FFF Take-over ROM
3 3000-3FFF Unused/CX
2 2000-2FFF System ROM 2
1 1000-1FFF System ROM 1
0 0000-0FFF System ROM 0

Primary bank Secondary bank

Fig. 11, HP-41 system memory

Section 7: HP-41 internal structure 95

The lower three blocks are always used for the operating system. Block 3 is
used by the operating system of HP-41CX and is unused in HP-41C/CV.

Block 4 is used by a special type of ROMs known as "take-over ROMs".
These special ROMs take over the control of the HP-41 from the operating
system. Hewlett-Packard's DIAGNOSTIC ROM is of this type. Take-over
ROMs will be discussed below.

Block 5 is used by the TIME module, block 6 for the printer (HP-82143A, HP-
82161A and the IR printer module HP-82242A) and block 7 is used for the
HP-IL module. Note that when you set the switch on the HP-IL module to
"disable", the printer ROM is addressed to block 4.

The TIME module, printer and HP-IL modules will (if present) always
answer to the addresses reserved for them. This means that although they
may physically take up a port, they do not use the addresses reserved for
the port. That's why they are called system addressed devices. HP-41C
memory modules and Extended Memory modules are addressed to the user
memory area, so they will not take up any space in the system area either.
These modules are also known as system addressed devices.

Blocks 8 through F are used for plug-in modules and peripherals. Two
blocks are reserved to each port, as shown in fig. 11 above. Normal modules -
like the MATH module - only take up one block (usually the lower block).
Some modules - like the plotter ROM - do, however, take up the full 8K
space reserved.

The HEPAX BCAT (Block CATalog) function lists the contents of blocks 3/5
through F. Look through the block catalog to see what is addressed to each
block of your HP-41 system.

User memory vs. system memory

The system, memory differs from user memory in one significant way: System
memory will hold both "normal" programs and functions. "Normal" programs
are known as FOCAL programs - Forty One CAlculator Language.

FOCAL programs in plug-in modules are identified by the "raised-T" symbol
preceding their label in CATALOG 2 and appear just like FOCAL programs in
main memory. They consist of normal program lines and can be viewed in
PRGM mode. Since they are in ROM, they cannot be edited (you'll get the
ROM message), but they can be copied to main memory using the built-in
COPY function.

96 Section 7: HP-41 internal structure

Functions are not preceded by the "raised-T" and cannot be listed. They
are not written in ordinary PRGM-mode type instructions, but rather in HP- 41
M-code (see part IV: M-code programming).

Bank switching
To make the most of available system address space, Hewlett-Packard use
bank switching. Bank switching means that there may be several "banks" of
ROM at the same block address. Only one bank is enabled at any time.

The HP-41C/CV operating system does not use bank switching, but the HP-
41CX has a second bank in block 5. The IR printer module residing in block 6
also has two banks. The Advantage module has a second bank in the
upper block, and the ROM of the HEPAX module has four banks in the
same block.

The method for bank switching is described in section 10: The M-code
instructions.

The operating system
The HP-41 operating system tells the CPU how to read from the keyboard,
how to access user memory, how to make calculations and how to output
results on the display. The operating system is stored in ROM memory.

The operating system is actually a very long and complex program written in
M-code. When you press a key on the keyboard, the HP-41 CPU "wakes up"
and begins executing the operating system program.

Let us for a moment return to the take-over ROM's in block 4. When the CPU
starts executing the operating system program, one of the very first things it
does is to jump to the first address in block 4 (address 4000). If there is no
module addressed to block 4, the CPU simply continues executing the
operating system program. If there is a module addressed to port 4, the CPU
will begin executing the program in this module, starting from address 4000.

Hewlett-Packard's DIAGNOSTIC ROM (used for diagnosing hardware errors)
is of the take-over type. The printer ROM is written in such a way that it will
immediately transfer control back to the operating system, even though it may
be addressed to block 4 (HP-IL module set to "disable").

Section 7: HP-41 internal structure 97

After checking for a take-over ROM, the operating system will then
determine which key is down and perform the requested action (enter one digit
into the X register, perform a calculation, store the key pressed as a program
line, etc.)

We will consider one special case, namely that of running a FOCAL program.
The HP-41 CPU doesn't understand FOCAL language - only M-code. It is the
job of the operating system to read the FOCAL program one line at a time,
interpret this line and then execute an appropriate M-code routine.

In this way, each FOCAL program line actually represents an M-code
subroutine, typically consisting of hundreds of M-code instructions. Thus, a
FOCAL program is written by stringing together references to M-code
subroutines and when it is executed, the CPU actually executes the M-code
subroutines specified by the program lines.

The HEPAX module
There are a few special things to note about the HEPAX module.

For one thing, the Advanced HEPAX and Double HEPAX Memory modules
contain 16,000 bytes of HEPAX memory. Since this much memory cannot fit
into the address space reserved for one port, it must use the address space
of two ports. This is why these modules occupy the address space of a port and
its neighbor, either port 1 and 2 (blocks 8 through B) or port 3 and 4 (blocks C
through F).

The Advanced HEPAX and Double HEPAX memory modules only need the
address space reserved for each port, they do not physically take up two ports.
Therefore, modules and peripherals that do not address themselves to the port
address space (system addressed devices) can be inserted next to Advanced
and Double memory modules without problems.

All the functions in the HEPAX ROM occupy only one block. This is achieved
by the use of bank switching between four banks. To make the HEPAX system
as flexible as possible, the HEPAX ROM will scan the system address space
each time the HP-41 is turned on. The HEPAX ROM will then automatically
address itself to a vacant block. Therefore, the HEPAX ROM may be
addressed to any block from 5 to F. This works all automatically, and you need
not concern yourself with the location of the HEPAX ROM. If no free block
exists in your HP-41 system, you will get the ILL CONFIG message.

98 Section 7: HP-41 internal structure

The status registers
As mentioned above, the first 16 registers of user memory has a special
significance. These registers are known as the status registers. Note that some
information does not take up whole bytes, but rather a number of half bytes. A
half byte is known as a nybble - 4 bits to 1 nybble, 2 nybbles to a byte.

This manual will only give a brief overview of the way the HP-41 uses the
status registers. For a more detailed description, refer to William C. Wickes'
"Synthetic programming on the HP-41" or another book on the subject of
synthetic programming.

Section 7: HP-41 internal structure 99

The structure of the status registers is shown in figure 12 below.

Fig. 12, The structure of status registers

100 Section 7: HP-41 internal structure

The stack registers

The X, Y, Z, T and L registers are the stack registers. They may contain a
number or an ALPHA string of up to 6 characters.

Numbers are always stored in scientific notation, i.e. as a 10-digit signed
mantissa and a 2-digit signed exponent, as shown below. The display format
(FIX, SCI or ENG) affects the displaying of numbers only.

Fig. 13, Number register format

The MS and the XS nybble represent the sign of the number and the sign
of the exponent, respectively. The HP-41 uses 0000b for "plus" and 1001b
for "minus". Any other value will normally display as a minus.

The mantissa is written with one nybble for each digit. The most significant
digit (MSD) is written to the left, i.e. in the lower half of the sixth byte.
The exponent is also written with the MSD to the left. If the exponent is
negative, it is written as "100 minus exponent".

For example, the number 1.2345 E-78 would be stored as 01234500000922
hexadecimal.

A stack register can also hold text. Text is stored as shown below.

Fig. 14, Text register format

The first nybble is always a hexadecimal 0, binary 0000b. The rest of the
register holds the up to 6 characters of ALPHA data. Character no. 1 is the
leftmost one. If there is less than 6 characters in the register, it is filled
up from the right end.

Section 7: HP-41 internal structure 101

For example, the three letters "XYZ" would be stored in a register as
1000000058595A hexadecimal.

The ALPHA register
The registers M, N, O and P together make up the ALPHA register. Since the
operating system knows that the contents of these registers is ALPHA data, the
leading l0h byte is not needed. It is thus possible to store up to 7 characters in
each register.

Characters are added to the ALPHA register from the right end of register M
and all the characters in the register is pushed to the left. The leftmost
character is pushed to the right end of the next register.

Other parts of the status registers
All the space marked as "scratch" is used by the CPU for temporary storage at
some time.

Each bit of the 9 leftmost nybbles of registers ├ and e correspond to a key.
When a key is pressed, the CPU first reads the bit corresponding to that key. If
the bit is set, it starts looking for an assigned function or FOCAL program.

Registers a and b hold the return stack for FOCAL programs and the address
pointer in FOCAL programs. The address pointer tells the CPU where to find
the next byte of the current FOCAL program. The return stack and the address
pointer are all 4 nybbles: 3 nybbles for register address and one nybble for the
byte subaddress.

Register c contains the register address of the first of the statistical
registers, the "cold start constant", the register address of main memory data
register 00 and the register address of the permanent .END. The cold start
constant is used to check if the contents of memory has been corrupted (e.g.
due to power failure). Each time the CPU starts running, it checks if the
contents of these three nybbles is 169 (hexadecimal). If this is not the case, the
CPU assumes that memory has been corrupted, and clears the entire
continuous memory. It gives the MEMORY LOST message and writes 169 in
the three nybbles of register c.

Register d contains all the user and system flags (flags 00 through 55). The
leftmost bit is flag 00.

Register e contains the flags for assignments to shifted keys as mentioned
above, and the current line number in the current FOCAL program.

102 Section 7: HP-41 internal structure

ROM block Structure
All system memory (ROM) blocks from 5 and up must have a certain
structure, described in this paragraph.

Fig. 15, ROM block structure

The addresses xNNN and xMMM are explained below. Refer to section 12:
"Developing your own ROM" for a fully commented example of a user-
developed ROM.

The very first word of the ROM is the XROM number. Possible XROM
numbers range from 0 through 31 (decimal). The next word gives the number
of functions and FOCAL programs in the ROM - the maximum number is 64
(decimal). No two blocks may have the same XROM number. The XROM
numbers of most modules and peripherals available are listed in appendix E.

The next part of the ROM structure is the Function address table (FAT).
The FAT is a look-up table that tells the CPU where to find the functions
and/or FOCAL programs in that ROM block. Each function and each label in a
FOCAL program occupies one entry in the FAT, and each entry takes
up two words.

The FAT cannot hold more than 64 entries, but it can hold less. The end of the
FAT is marked by a null entry, i.e. two words with the value 000.

Section 7: HP-41 internal structure 103

The first word of a FAT entry is of the form t0a and the second is of the form
0bc. t is the type, where 0 means an M-code routine (function) and 2 means a
FOCAL program. abc is the address of the first executable word.

Let's take an example. There is a FOCAL program starting at address x460 and
an M-code function starting at address x807 in the ROM. The FAT would
look like this:

Address Word Comment
 x000 011 The XROM number of this ROM is l1h=17d.
 x001 002 Two entries
 x002 204 The first entry is a FOCAL program (t=2)
 x003 060 It starts at address x460 (a=4, bc=60)
 x004 008 The second entry is an M-code routine (t=0)
 x005 007 It starts at address x807 (a=8, bc=07)
 x006 000 Two null words at
 x007 000 the end of the FAT

The length of the FAT varies according to how many FAT entries there
are. Recall that the FAT starts at address x002, each entry takes up 2
words and the end of the FAT takes up two words. This means that the
FAT takes up (n x 2 + 4) words.

In the above example, we find that xNNN (last word of the FAT) in the
above figure is 2 x 2 + 3 = x007 and that xMMM (first word of code) is
2 x 2 + 4 = x008.

The code space is where the FOCAL programs and functions are actually
stored.

The next part of the ROM structure is the interrupt jump locations. Each
time a certain event occurs, the CPU checks the interrupt locations in all
blocks. An interrupt location normally contains a null word or a jump
instruction.

If, for example, an M-code routine in the block needs to react to MEMORY
LOST, the interrupt location for MEMORY LOST would contain a jump
instruction. On MEMORY LOST, the jump is executed, the routine runs and
terminate with a jump to address 27F3. This returns control to the
operating system.

104 Section 7: HP-41 internal structure

The below table list the interrupt addresses and when they are checked.

Address Checked

 xFF4 During PSE. The pause timer is in A S&X. Called 92
times each pause.

 xFF5 If system flag 53 or peripheral flag 13 is set. The
timer stops the polling of this address, i.e. if the
timer has business to perform, this address in other
ROMs is never asked.

 xFF6 On wakeup with no key pressed.

 xFF7 When the calculator is turned off.

 xFF8 Just before the CPU stops.

 xFF9 On wakeup.

 xFFA On MEMORY LOST

Table 7, Interrupt addresses

The second last part of the ROM structure is the ROM ID and revision number
in addresses xFFB-xFFE. The ROM ID is two letters in addresses xFFD and
xFFE, and the revision is typically a letter and a number in addresses xFFB
and xFFC. As an example we look at the TIME 2C module. It has ROM ID
"TM" and version "2C". The contents of addresses 5FFB through 5FFE are:

 5FFB C
 5FFC 2
 5FFD M
 5FFE T

The very last word is the ROM checksum. This is calculated by adding up all
other words in the block with wrap-around carry (i.e. each time the sum
exceeds 1023, one extra is added), and then taking the 2's complement of
the sum.

When using the HEPAX file system, there is no need for you to worry about
XROM numbers, FAT entries, etc. The HEPAX file system will automatically
take care of all these details.

Section 8:

HP-41 microprocessor

Introduction to the CPU
The Central Processing Unit (CPU) is the "brain" of the calculator. All
information processing (calculation, copying contents of memory, etc.) goes
via the CPU.

Within the CPU there are a number of registers used for temporary storage of
the information the CPU is working on. There are three major groups of
registers: The Arithmetic, Storage and Address registers. In addition to these
registers there are some special registers and flags.

Name Length Use
 C 56 bit Accumulator
 A 56 bit Primary arithmetic register
 B 56 bit Secondary arithmetic register
 M 56 bit Storage register
 N 56 bit Storage register
 G 8 bit Storage register
 PC 16 bit Program counter
STK 16 bit Bottom of the 4-level CPU return stack
 KY 8 bit Keyboard buffer register
 ST 8 bit Flag register
 T 8 bit Beeper output register

Table 8, CPU registers

The ST register contains the status of CPU flags 0-7. In addition to these, the
CPU also contains 6 more flags that can only be accessed individually.

The STK registers is the CPU return stack. Over the bottom register there are
three more 16-bit registers that cannot be accessed.

106 Section 8: HP-41 microprocessor

Information can be moved in different directions between registers as shown
below. A double line indicates bidirectional transfer, a single line indicates
only one-way transfer.

Fig. 16, CPU register connections

The CPU C register also connects directly to system memory, user memory,
the display and peripheral units like the HP-IL module or card reader.

It is important that you do not confuse the CPU registers with the status
registers described in section 7. Even though some of them have the same
or similar names, the CPU registers have nothing to do with the status
registers. The CPU also contains 14 flags - these are all different from the user
and system flags accessed with the FOCAL instructions FS?, SF and CF.

More about the structure of registers
To the CPU, a 56-bit register consist of 14 nybbles or digits, numbered 0
to 13, starting at the right end of the register.

Section 8: HP-41 microprocessor 107

The CPU can access all or part of the 56-bit registers. The registers are divided
into fields as shown below.

Fig. 17, Structure of registers

Abbreviation Full name Digits
 MS Sign of mantissa 13
 M Mantissa 3-12
 XS Sign of exponent 2
 XP Exponent 0-1
 S&X Sign of exponent and exponent 0-2
 ADR Address field 3-6
 KY Key buffer field 3-4

Table 9, Register fields

We will refer to any part of a register using square brackets. For example,
C[6:3] means the 6th, 5th, 4th and 3rd digit of the C register. We could
also refer to this part of the register as C ADR, meaning "C register,
address field".

The CPU can also access one digit or any continuous range of digits. This
is done by using pointers, as explained in section 9: "The M-code
instructions".

The arithmetic registers (A, B, C)
There are three arithmetic registers named C, A and B. They are of
different importance - the most important register is the C register, known
as the accumulator.

108 Section 8: HP-41 microprocessor

All data transfer to and from user memory and peripheral units goes via
the C register.
The A register is the primary arithmetic register and the B register is the
secondary arithmetic register. The A register may be used for both operands
and results, whereas the B register can only hold operands.

The storage registers (M, N, G)
The CPU contains two full-size storage registers, the M and the N
registers. In addition to these, there is also an 8-bit storage register named
G. The storage registers can only exchange data with the C register.

The M and N registers exchange data with the full C register. The G
register only exchanges data with two digits of the C register as specified
by the pointer. Refer to section 10: "The M-code instructions" for an
explanation of the use of pointers.

The address registers (PC, STK)
Just like any other conventional type computer, the HP-41 CPU need to
keep track of where to find the next instruction to be executed. The 16-bit
PC register is used tor this purpose.

The PC always contain the address of the next instruction to be executed.
Normally, the PC is simply incremented by one after each instruction.

The CPU also contains a 4-register stack for return addresses. Only the
bottom register of the stack can be accessed. The instructions working with
the return stack refer to this bottom register simply as STK. Whenever an
address is put on the stack from the C register ("pushed") or taken from
the stack to the C register ("popped"), the stack automatically moves, just
like the normal RPN number stack.

In the case of a GO (go to address) instruction, the jump address is simply
loaded into PC. In the case of an XQ (execute subroutine) instruction, the
PC is copied to the return stack and then overwritten by the XQ address.
When a "return" instruction is encountered, the PC is loaded with the
return address from the stack.

Section 8: HP-41 microprocessor 109

The data paths around the PC register are a little complicated:
- The C register can only write to the PC register
- The KY register may be written to the lower 8 bits of PC.

You'll see that there is no way to read directly from the PC register to the
C register.

Other registers and flags

The KY register

When a key is pressed, its keycode will be placed in the KY register
(provided that another key is not still held down). The keycodes are shown
in figure 18 below.

110 Section 8: HP-41 microprocessor

Fig. 18, The internal keycodes of the HP-41

Section 8: HP-41 microprocessor 111

Note that these codes are different from the codes you may be familiar
with from Synthetic Programming.

There is also a keydown flag that is set when a key is down. It can be
tested and cleared. If a key is down when the clear instruction is given, it
is set again immediately.

The KY register may be copied to the lower 8 bits of the PC register - in effect
creating a jump depending on the key pressed.

The ST register and the CPU flags
The most often used flag in the HP-41 CPU is the carry flag. It is used to
control jumps and returns.

The carry flag is set if a test result is true or a calculation results in an
over- or underflow. Unlike all other flags, the carry flag is cleared after
each instruction that does not specifically set it. Thus, the carry flag
remains set only for one instruction.

The HP-41 CPU has 14 flags in addition to the carry flag and the keydown
flag. Of these, flags 10-13 have special meanings as shown below. Flag 0-7
may be accessed as the ST register in the same way as user flags 0-7 are
exchanged with the user X register by the X< >F or XFA X< >F FOCAL
instruction. Flags 8-13 can only be accessed individually.

CPU flag Meaning
8 Occasional use
9 Occasional use
10 FOCAL program pointer in ROM
11 Stack lift enabled
12 FOCAL program pointer in PRIVATE program
13 FOCAL program running

Table 10, CPU flags

The HP-41 system also contains 14 peripheral (or interrupt) flags. They are set
by various peripheral units, and may be read by the HP-41 CPU. If any
peripheral flag (0 through 12) is set, flag 13 is also set.

The T register
The T register is the tone register. It is accessed via the ST register and
is connected to the beeper. The greater the number in the T register, the
louder the tone. See section 11: "M-code for peripheral units" for an
explanation of how to make tones.

112 Section 8: HP-41 microprocessor

The pointers

There are two pointers P and Q that can take on values from 0 to 13. They are
used to point to a specific part of a 56-bit register.

Some instructions use both pointers, and some use only one (the active
pointer). One pointer (either P or Q) is active at any time. This pointer is
referred to as PT.

Part IV:

M-code programming

Section 9:

Introduction to M-code

This part of the manual explains about HP-41 M-code. Programming in M-
code is somewhat more difficult than FOCAL programming, but it also gives
you a lot of new possibilities.

The native language of any CPU is called the machine language of that
CPU. On the HP-41, machine language is also known as machine code,
microcode or simply M-Code.

Machine language consist of simple instructions like "Increment A" or "Add A
and C and put result in C". When you need an advanced FOCAL instruction
like SIN or SDEV, the operating system reads your keystrokes
and then performs a series of simple M-Code instructions that gives the
result you asked for.

Why M-code?
As you know by now, the operating system also takes care of many
housekeeping tasks, like keeping track of where in memory your data is stored,
reading from and writing to peripheral units, error checking (DATA ERROR,
NONEXISTENT, etc.)

Naturally, you pay a price for this convenience. Program execution is
relatively slow and you can only access memory and peripherals in the way the
operating system defines.

With M-code, none of these limitations exist. Here are a few examples of what
you can do with M-code:
- Rewrite FOCAL programs to run up to 100 times faster,
- Use high precision arithmetic with 13 digits instead of 10,
- Create subroutines that do not disturb the stack,
- Fast and advanced HP-IL communication,
- Special use of card reader and wand,
- Very fast integer arithmetic,
- Special input routines,
- Create whole new data structures,
- Easy use of hexadecimal numbers,
- Create special tones, e.g. for dialing on your telephone.

Section 9: Introduction to M-code 115

How do I program in M-code?
The most important tools you need are pen and paper. Write down your M-
code routine and "assemble" it, i.e. convert the mnemonics to hex codes using
the tables in appendix C. Enter the hex codes using the HEXEDIT function,
and disassemble the code using DISASM. This also allows you to check the
addresses of all jumps.

Now run the routine with some test data and check the results.

Why doesn't my routine work?
In most cases, because a jump distance is wrong. Either you have
miscalculated a jump, or you have inserted or deleted code without
changing all jumps affected.

Also notice that the "port dependent jumps" (covered in section 12) overwrite
the contents of the C register. Remember whether your calculations are in
hexadecimal or decimal mode. Check that you have not mixed up some "jump
if carry" with "jump if not carry". Check that you have given any system
subroutines the correct input, and that you take the output from the correct
place. And finally, check that you remember to deselect RAM and peripherals.

CPU "bugs"
The most annoying error you can find is an error in the HP-41 itself. The HP-
41 CPU contains a number of errors or "bugs". The bugs found to date are:

PT= 13, PT=PT-1, C=G @PT,+ does not copy G correctly to C. Insert
a NOP before the C=G @PT,+ instruction to make it work as expected.

Don't use CLRF, SETF, ?FSET, ?PT=, C< >ST XP, C=C OR A, C=C
AND A, T< >ST, ST=T, T=ST immediately after a class 2 instruction.
If you need to use any of the above instructions right after a class 2
instruction, insert a NOP after the class 2 instruction.

Not Manufacturer Supported
All information about M-code programming is "NOMAS". NOMAS stands for
NOt MAnufacturer Supported – i.e. Hewlett-Packard does not support M-code
in any way. Don't call HP if you have problems with your M-code
programming.

116 Section 9: Introduction to M-code

Instead, you will probably benefit from joining one of the user groups listed in
appendix G.

You should note that since there is no official source of information about M-
code, some uncertainty prevail. Although we have taken great pains to compile
the most accurate information about HP-41 M-code, we cannot guarantee that
the information below is absolutely error-free.

"Crashes"
Since there is no error checking when programming in M-code, you are
subjected to the full effect of M-code programming errors. This will most often
result in the occurrence of a "crash". A crash is a condition where
the calculator has a blank or unintelligible display and does not respond to
any keys.

This is not in any way dangerous to the calculator. On newer HP-41's,
press and hold the ENTER key and press the ON key a few times. Release
both keys and press the backarrow key. This will usually return the HP-41
to life. If this doesn't help (and on older HP-41's), take out the batteries
for a few seconds, insert the batteries again and press the backarrow key.

If the calculator is still "crashed", remove the batteries and short the rightmost
and leftmost terminal in the calculator momentarily. This should clear memory
and unlock your HP-41.

Section 10:

The M-code instructions
This section describes all the normal M-code instructions that the HP-41
CPU recognizes. There are some special codes that are used when control
of the HP-41 is given temporarily to a peripheral. These codes will be
described in the next section.

The HP-41 operating system contains many useful routines that you can call
from your own M-code programs. A selection of the most commonly used
entry points in the operating system is given in section 12.

The structure of M-code instructions
All instructions consist of one or two 10-bit words. They are divided into
four classes according to the two least significant (rightmost) bits as
follows:

Word Class
xx xxxx xx00 0
xx xxxx xx01 1
xx xxxx xx10 2
xx xxxx xx11 3

Table 11, M-code instruction classes

All class 1 instructions are two-word absolute GO and XQ instructions.
Class 2 contains all instructions dealing only with register C, A and B,
class 3 contains all relative jumps and class 0 contains the remaining
instructions.

All instructions have a 10-bit hexadecimal code. For ease of reading, each
instruction is also assigned a mnemonic that tells what the instruction does.
Example: Hex code 148h means "set CPU flag 6" and has the mnemonic SETF
6.

The mnemonics used in this manual and by the HEPAX disassembler were
first created by Jacobs and DeArras and are the de facto standard for
HP-41 M-code. Hewlett-Packard has their own mnemonics for all instructions,
but have never officially published these.

118 Section 10: The M-code instructions

The only differences between HEPAX mnemonics and Jacobs/DeArras are:
- The active pointer is referred to as PT instead of R in the original

mnemonics,
- The exponent field of a registers is referred to as XP instead of X. This

also avoids possible confusion with Hewlett-Packard mnemonics that use
"X" for the sign and exponent field.

- The peripheral flag instructions (?FI n) have been replaced by
descriptive names.

Note that this section only explains the instructions. Refer to section 12:
"Creating your own ROM" for examples of M-code programming.

About jumps
The class 1 instructions are the "absolute go to" and "absolute execute"
instructions. These instructions are used to jump to a specific address. The
class 3 instructions are the "relative jump" instructions. They are used to jump
up to 63 addresses forwards or 64 addresses backwards. There is a third kind
of jumps called "port dependent jumps". They are used to jump to a specific
address within the same block.

All jump types have their advantages and disadvantages, as shown below.

Jump type Advantages Disadvantages

Absolute Can jump to any
address in system
memory

Routine is fixed to
one address.

Relative Relocatable Limited range.

“Port
Dependent”

Can jump to any
address in the
current block.

Routine is fixed to
one address within
the block.

Table 12, Advantages and disadvantages of jump types

Section 10: The M-code instructions 119

Absolute jumps
Absolute jumps should only be used when calling the operating system or a
system addressed device. If you use absolute jumps to call your own M-code
routines, they must stay in exactly the same memory location. If you (or
anyone else) later needs to use your routine in another block, the code must be
rewritten.

This example is not as far-fetched as it may sound. For instance, if you decide
to have your M-code routines programmed into a ROM module, this module
may be plugged into either port and your code will therefore have to operate
from a different block address.

Relative jumps
You should use relative jumps within your routines as much as possible. With
relative jumps, your routine may be moved to another position within the block
or to another block without any problems.

You might even want to create "stopover" jumps if you need to jump further
than 63 or 64 addresses. The below example illustrates this:

xC32 ?KEY If a key is down, you must jump 5Bh forward.
xC33 JC +3F Jump 63d addresses forward
 .
 .
xC6F iii Part of another routine
xC70 NOP Clears carry (not needed if iii never sets carry)
xC71 JNC +02 Jump 2 forward, i.e. skip the next address.
xC72 JNC +1C "Stopover" jump.
xC73 jjj The other routine continues.
 .
 .

First, you jump 63 (=3Fh) addresses forward to address xC72, then you jump
28 (=1Ch) addresses forward (in this case to xC8Eh). In the other routine, the
JNC +02 instruction simply skips over the 28-address jump.

120 Section 10: The M-code instructions

Port dependent jumps
If you are creating a whole ROM, you might create subroutines that you
wish to call from another part of that ROM. This is done by means of
"port dependent jumps". A routine that is called with a port dependent
jump must stay at the same address within the block, but the code for your
ROM may be relocated to another block without problems.

A port dependant jump is actually a call to a subroutine in the operating
system. There are four subroutine calls for jump instructions and four
subroutine for execute instructions. They correspond to the first, second,
third and last quarter of a 4K ROM block. There are also two subroutine
calls for jump and execute within the same quarter block. The word
following the subroutine call must contain the address within the quarter
you wish to go to or execute.

Port dependent jumps are described in detail in the next section.

Class 0 instructions
Class 0 mainly contains instructions dealing with flags, pointers, data
storage and basic peripheral handling. Don't despair - this is the most
complicated class of instructions. You don't have to read and understand
every instruction - just browse through when first reading this section.

Parameter instructions
The most commonly used instructions in class 0 are the instructions that
use a parameter. The below table gives an overview of the parameter
instructions. The actual hex codes are given in appendix C.

Section 10: The M-code instructions 121

Mnemonic Meaning Parameter

CLRF p Clear CPU flag p. 0 < = p < = 13
SETF p Set CPU flag p. 0 < = p < = 13
?FSET p Set carry if CPU flag p is set. 0 < = p < = 13
PT= p Set pointer to digit p. 0 < = p < = 13
?PT= p Set carry if pointer is at digit p. 0 < = p < = 13
LD@PT- p Load C register digit at pointer 0 < = p < = Fh

with the value p and decrement
pointer. Pointer "wraps around".

RCR p Rotate C register p digits right. 1 < = p < = 13
WRIT p Write C register to selected user 0 < = p < = 15

memory or peripheral register.
READ p Read selected user memory or

peripheral register to C register. 1 < = p < = 15
HPIL=C p Copy C[1:0] to HP-IL, register p. 0 < = p < = 7
SELP p Select peripheral to take control. 0 < = p < = 15

The LD@PT- p automatically decrements the pointer. If the pointer was at
digit 0, it is set to digit 13.

If you need to rotate the C register n digits left, simply rotate it 14 minus n
digits right.

Communication with peripheral units is described in the next section: "Using
M-code with peripheral units".

Reading from and writing to user memory registers is described in detail later
in this section.

Special instructions
The special instructions of class 0 are described below, along with their
hexadecimal codes.

General
Mnemonic Hex Meaning
NOP 000 No operation - just clears the carry flag and takes

 time
LDI S&X 130 Load the 10-bit word in the next address into C[2:0].

122 Section 10: The M-code instructions

Pointer instructions
Mnemonic Hex Meaning
PT=PT-1 3D4 Decrement pointer. If PT=0, then PT is set to 13.
PT=PT+1 3DC Increment pointer. If PT=13, then PT is set to 0.
SLCT P 0A0 Select P as the active pointer (PT)
SLCT Q 0E0 Select Q as the active pointer (PT)
?P=Q 120 Set carry if P and Q have same value.

Storage register instructions
Mnemonic Hex Meaning
C=M ALL 198 Copy M register to C register.
M=C ALL 158 Copy C register to M register.
C< >M ALL 1D8 Exchange C and M register.
C=N ALL 0B0 Copy N register to C register.
N=C ALL 070 Copy C register to N register.
C< >N ALL 0F0 Exchange C and N register.
C=G@PT,+ 098 Copy G register to C register digits at pointer and

at pointer + 1.*
G=C@PT,+ 058 Copy C register digits at pointer and at pointer + 1

to G register.*
C< >G@PT,+ 0D8 Exchange C register digits at pointer and at pointer

+ 1 with G register.*

ST register instructions
Mnemonic Hex Meaning
C=ST XP 398 Copy ST register to C[1:0]
ST=C XP 358 Copy C[1:0] (eXPonent) to ST register.
C< >ST XP 3D8 Exchange C[1:0] and ST register.
ST=0 3C4 Clears the ST register, i.e. clears CPU flags 0-7.

Tone register instructions
Mnemonic Hex Meaning
ST=T 298 Copy T register to ST register.
T=ST 258 Copy ST register to T register.
ST< >T 2D8 Exchange ST and T register.

 * If PT=13 then C[0] and C[13] is copied. Last digit of G is always last in C, even if PT=13.

Section 10: The M-code instructions 123

Arithmetic and logic instructions
Mnemonic Hex Meaning
A=B=C=0 lA0 Clear A, B and C registers.
SETHEX 260 Set CPU to calculate in hexadecimal.
SETDEC 2A0 Set CPU to calculate in decimal.
C=C OR A 370 Perform logical OR on the A and C registers and store

result in C.
C=C AND A 3B0 Perform logical AND on the A and C registers and store

result in C.

Memory and peripheral handling instructions
Mnemonic Hex Meaning
READ DATA 038 Copy the active user memory register to the C

register.
WRIT DATA 2F0 Copy C register to the active user memory register.
FETCH S&X 330 Fetches the word at system memory address given in

C[6:3] to C[2:0]. Do not fetch from address 0002h, as
this will cause a file system reset.

WRIT S&X 040 Writes the word in C[2:0] at system memory address
given in C[6:3]. Only works if there is HEPAX RAM*
at the address.

RAM SLCT 270 Select the user memory register specified in C[2:0].
PRPH SLCT 3F0 Select peripheral unit specified in C[2:0].

Jump related instructions
Mnemonic Hex Meaning
RTN 3E0 Return to address in STK.
?C RTN 360 Return to address in STK if carry is set.
?NC RTN 3A0 Return to address in STK if carry is clear.
POP ADR 1B0 Pop STK. Bottom STK register is copied to C[6:3]

and STK drops.
PUSH ADR 170 Push STK up and store C[6:3] in the bottom STK

register.
GOTO ADR lE0 Jumps to the address in C[6:3].
XQ->GO 020 Pop the CPU return stack (loses one return address).

This turns the latest XQ into a GO.

 * Or other MLDL type RAM.

124 Section 10: The M-code instructions

Display handling instructions
Mnemonic Hex Meaning
DSPOFF 2E0 Turns display off.
DSPTOG 320 Toggles display between on and off.

Keyboard handling instructions
Mnemonic Hex Meaning
CLRKEY 3C8 Clears the keydown flag. If a key is down, the flag

is set again immediately.
?KEY 3CC Sets carry if keydown flag is set.
C=KEY KY 220 Copy key code from KY to C[4:3].
GOTO KEY 230 The contents of the KEY register is written in the

lowest byte of the program pointer PC.

Battery and power instructions
Mnemonic Hex Meaning
?LOWBAT 160 Set carry if the battery is low.
POWOFF 060 Must be followed by a NOP. If display is on: stop

CPU. If display is off: turn HP-41 off.

I/O handling instructions
Mnemonic Hex Meaning
?PBSY 3AC Set carry if HP-82143A printer busy.
?CRDR 32C Used with card reader. See section 11, "M-Code for

peripheral units".
?WNDB 22C Set carry if there is data in the buffer of the

optical wand.
?EDAV 0AC Set carry if the emitting diode of the HP-82242 IR

module is available.
?IFCR 16C Set carry if the HP-IL interface is ready (InterFace

Clear Received).
?SRQR 2AC Set carry if the HP-IL interface needs service

(Service ReQuest Received).
?FRAV 12C Set carry if a frame is available in the HP-IL

interface (FRAme aVailable).
?FRNS 26C Set carry if the frame transmitted on HP-IL does not

return as sent (Frame Return Not as Sent).
?ORAV 0EC Set carry if the output register is available (Output

Register AVailable).
?ALM 36C Set carry if an alarm from the timer has occurred.
?SERV 2EC Set carry if any peripheral unit needs service. The

SERV flag is set if any other interrupt flags is set.

Section 10: The M-code instructions 125

HEPAX instructions
Mnemonic Hex Meaning
ENBANK1 100 Enables primary bank. Only works in the same system

memory block as the instruction, and only if supported
by the ROM.

ENBANK2 180 Enables secondary bank. Only works in the same
system memory block as the instruction, and only if
supported by the ROM.

ENBANK3 140 Enables third bank. Only works in the same system
memory block as the instruction, and only supported by
the ROM.

ENBANK4 1C0 Enables fourth bank. Only works in the same system
memory block as the instruction, and only supported
by the ROM.

WPTOG 1F0 Toggles write protection status of HEPAX RAM in
system memory block specified in C[0].

ROM BLK 030 Moves HEPAX ROM to system memory block
specified in C[0].

Note that if the following instructions are used immediately after a class 2
instruction, you might get an unexpected result:

 CLRF, SETF, ?FSET, ?PT=, C< >ST XP, C=C OR A, C=C AND A,
 T< >ST, ST=T, T=ST.

If you need to use any of the above instructions right after a class 2
instruction, insert a NOP after the class 2 instruction.

Accessing user memory registers
User memory registers are physically grouped in blocks of 16 registers. One
user memory register is active at any time, and the block that contains this
register is the active block. You select the active user memory register
with the RAM SLCT instruction.

The WRIT DATA instruction copies the CPU C register to the active user
memory register. The READ DATA instruction copies the active register to
C.

You could also write to any register in the active block of user memory
using the WRIT 0 through WRIT 15 instructions. The corresponding READ
instructions are, however, only valid for registers 1 through 15. This means
that to read to register 0 of any block, you must select it directly using
the RAM SLCT instruction and then use READ DATA.

126 Section 10: The M-code instructions

When you select a peripheral unit (e.g. the display), you must deselect the user
memory. This is done by selecting a non-existent RAM chip using the RAM
SLCT instruction with 0l0h in C[2:0]. If you forget this, your HP-41 will
almost surely crash.

Class 1 instructions
All class 1 instructions are two words long. The two words have the following
structure:

 First word: ccccdddd0l
 Second word: aaaabbbbtt

Where tt is the type of instruction and aaaabbbbccccdddd is the address.

The type is interpreted as follows:

 t t Mnemonic Instruction type
 00 ?NC XQ If carry clear then execute subroutine
 01 ?C XQ If carry set then execute subroutine
 10 ?NC GO If carry clear then go to address
 11 ?C GO If carry set go to address

Table 13, Class 1 jump types

The below FOCAL program calculates the code of all four types of jumps, but
let's first work out a jump by hand:

We need to execute the subroutine that disables user memory and enables
the display (address 07EF) if carry is clear. The jump is calculated as follows:

Address 07EFh hexadecimal is 0000 0111 1110 1111 binary. Jump type is
?NC XQ, i.e. tt is 00. The code is:

First word: 1110111101 (binary) 3BD (hex)
Second word: 0000011100 (binary) 01C (hex)

To calculate a jump automatically, execute the "JUMP" FOCAL program
shown below. Enter the jump type (0, 1, 2 or 3). Enter the address at the
prompt. The jump type and the two words are displayed. To let the "JUMP"
program calculate the above jump, do the following:

Section 10: The M-code instructions 127

Keystrokes: Display:
XEQ JUMP TYPE 0-3?
0 R/S ?NC XQ _ _ _ _ Jump type 0, ?NC XQ
07EF R/S ?NC XQ 07EF:

3BD,O1C The two words are 3BD and 01C.

And now for the promised FOCAL program:

0l LBL "JUMP" 30 HEPAX The OR
02 "TYPE 0-3?" 31 9 function
03 0 32 1023
04 PROMPT 33 HEPAX The BCD-BIN
05 4 34 3 function
06 MOD 35 X< >Y
07 STO 00 36 HEPAX The AND
08 .003 37 1 function
09 + 38 LASTX
10 "?C GO" 39 X < >Y
11 ISG X 40 3
12 "?NC GO" 41 DECODYX
13 ISG X 42 "├,"
14 "?C XQ" 43 RDN
15 ISG X 44 10
16 "?NC XQ" 45 HEPAX The SHIFTYX
17 "├ (space)" 46 11 function
18 4 47 -2
19 HPROMPT 48 HEPAX The SHIFTYX
20 4 49 11 function
21 DECODYX 50 RCL 00
22 "├:" 51 HEPAX The BCD-BIN
23 1 52 3 function
24 HEPAX The BCD-BIN 53 HEPAX The OR function
25 3 function 54 9
26 X<>Y 55 3
27 -2 56 DECODYX
28 HEPAX The SHIFTYX 57 AVIEW
29 11 function 58 CLX

59 END

Program listing of the "JUMP" program

128 Section 10: The M-code instructions

Class 2 instructions
All class two instructions operate on a specific part of the registers
involved. The following possibilities exist:

ALL The entire register.
M The mantissa, digits [12:3].
S&X Sign and exponent, digits [2:0].
MS The sign of the mantissa.
XS The sign of the exponent.
@PT The digit at the active pointer.
PT<- From digit 0 up to the digit at the active pointer, inclusive.
P-Q From pointer P to pointer Q, from right to left.

Table 14, Fields used with class 2 instructions

When using class two instructions, one of the above fields must always be
specified.

Section 10: The M-code instructions 129

The class two instructions are:

Mnemonic Meaning
A=0 Clear the A register.
B=0 Clear the B register.
C=0 Clear the C register.
A=C Copy C register to A register.
C=B Copy B register to C register.
B=A Copy A register to B register.
A< >C Exchange A and C registers.
C< >B Exchange C and B registers.
A< >B Exchange A and B registers.
C=C+A Add C and A and put result in C register.
A=A+C Add A and C and put result in A register.
A=A+B Add A and B and put result in A register.
C=C+C Double C = shift C one bit left.
C=A-C Subtract C from A and put result in C register.
A=A-C Subtract C from A and put result in A register.
A=A-B Subtract B from A and put result in A register.
C=C+1 Increment C.
A=A+1 Increment A.
C=C-1 Decrement C.
A=A-1 Decrement A.
?C≠0 Set carry if C different from 0.
?A≠0 Set carry if A different from 0.
?B≠0 Set carry if B different from 0.
?A≠C Set carry if A different from C.
?A<C Set carry if A less than C.
?A<B Set carry if A less than B.
RSHFC Shift contents of C register one digit right.
RSHFA Shift contents of A register one digit right.
RSHFB Shift contents of B register one digit right.
LSHFA Shift contents of A register one digit left.
C=0-C Replace C with 1's complement of C.
C=-C-1 Replace C with 2's complement of C.

130 Section 10: The M-code instructions

Let's take a few examples:
C=0 S&X Clear the S&X field of the C register, i.e. C[2:0].
A=C MS Copy the sign of the mantissa of C to the same field of A.
C=C+1 M Increment the C register mantissa.
?A<C @PT Set carry if the digit at the active pointer in the A register

is less than the same field of the C register.
RSHFB ALL Shift the entire B register one digit right.

If any class 2 operation results in the most significant digit becoming
greater than 9 (in decimal mode) or Fh (in hexadecimal mode), then carry
is set. Carry is also set if a subtraction results in a borrow.

Note that due to an error in the HP-41 CPU the C=-C-1 instruction
sometimes sets carry. Therefore there should be at least one instruction
(e.g. a NOP) between this instruction and the first following jump
instruction.

Class 3 instructions
Class three instructions are relative jumps, i.e. of the type "jump nn
instructions forwards or backwards". These jumps should be used whenever
possible, because they are freely relocatable.

There are four types of relative jumps:
JNC +nn Jump nn instructions forwards if carry clear. 0l < = nn < = 3Fh
JC +nn Jump nn instructions forwards if carry set. 0l < = nn < = 3Fh
JNC -nn Jump nn instructions backwards if carry clear. 0l < = nn < = 40h
JC -nn Jump nn instructions backwards it carry set. 0l < = nn < = 40h

Table 15, Class 3 jump types

The structure of the class 3 instructions is:

d6 d5 d4 d3 d2 d1 d0 n 1 1

where ddddddd is the signed jump distance and n specifies if the instruction
is a "jump if carry" or "jump if not carry".

Section 11:

M-code for peripheral units
This section describes how M-code allows you to communicate with the
following peripherals units in special ways:

Tone generator
Display
Printer
Optical wand
Card reader
Timer
HP-IL interface

Using the tone generator
The tone generator (the beeper) is accessed using the ST=T (298h), T=ST
(258h) and ST<>T (2D8h) instructions.

The T register is connected to the beeper, and tones are created by repeatedly
changing the value in the T register (usually exchanging 00h and FFh). Other
values may be used, but will result in a weaker tone.

The frequency is determined by the swap rate. Usually, you would put FFh in
the T register, wait a while, put 00h in the T register, etc. Each HP-41 M-code
word takes about 158 μs to execute (one machine cycle), so the frequency is

 f =

You can create odd-sounding tones by leaving the FFh and 00h in the T
register for a different number of cycles. Note that if you have “speeded” your
HP-41, the tone frequency will be increased.

1
no. of FFhcyclesno.of 00h cycles x 15810E-6

132 Section 11: M-code for peripheral units

ROM character codes
Each character is represented by a 9-bit ROM character code. The ROM
character codes are used for ROM function names and when writing to the
display. Note that the ROM character code is different from the user character
code described in section 3: "The Extended Functions". User character code is
used for FOCAL programs and by the XFA XTOA and XFA ATOX
functions.

The ROM character code has the following structure:

Bit(s) Meaning
 8 Specifies "special character".
7-6 Specifies punctuation.
5-4 Specifies the row of the ROM character table.
3-0 Specifies the column of the ROM character table.

Table 15, ROM character code structure

The punctuation is determined as follows:

Bit 7 Bit 6 Punctuation
 0 0 none
 0 1 . (period)
 1 0 : (colon)
 1 1 , (comma)

Table 16, ROM character code punctuation

Bit 8 specifies if the character is a "special character". On older HP-
41C/CV/CX calculators, only the first row of special characters existed, the
remaining three rows simply displaying as spaces. However, the newer HP-41
calculators (known as "halfnut" calculators, and identified by a 1/16" black rim
on the display) have four rows of special characters as shown below.

Section 11: M-code for peripheral units 133

Normal characters
 Column
Row

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 @ A B C D E F G H I J K L M N O

1 P Q R S T U V W X Y Z [\] ^ _

2 ! " # $ % & ' () * + - /

3 0 1 2 3 4 5 6 7 8 9 ç , < = > ?

Fig. 19, Normal ROM characters

Special characters (older HP-41 calculators)
 Column
Row

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 a b c d e ` ~

1
2
3

Fig. 20, Special ROM characters

Special characters (“halfnut” HP-41 calculators)
 Column
Row

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 a b c d e ` ~

1

2 ` a b c d e f g h i j k l m n o

3 p q r s t u v w x y z { | } ~

Fig. 21, Halfnut special ROM characters

134 Section 11: M-code for peripheral units

Using the display
The display is a peripheral unit and must be selected using the PRPH SLCT
instruction. The procedure for this is as follows:
1. Issue 0l0h, RAM SLCT (270h) to de-select the user memory.
2. Issue 0FDh, PRPH SLCT (3F0h) to select the display.
System subroutine 07F6h (see section 12) performs this task.

Once the display has been selected, it is accessed with the WRIT and READ
instructions.

The annunciators are set using the WRIT DATA (2F0h) instruction and may
be read using the READ M (178h) instruction. The last 12 bits of the C
register each corresponds to one display annunciator as follows:

Bit 11 10 9 8 7 6 5 4 3 2 1 0
Annunciator BAT USER G RAD SHIFT 0 1 2 3 4 PRGM ALPHA

Fig. 22, Display annunciators

All the remaining instructions that work when the display is selected have
some common features:
- Field: The instruction affects a range of bits (8, 8-0, 7-0, 7-4 or 3-0).
- Number of characters: The instruction affects a number of characters in

the display (1, 4, 6 or 12).
- Rotation: Data is always written to or read off one end of the display

(right or left). When data is written, it is pushed onto the end, and the
remaining data is shifted to make room. When data is read, it is pulled
off the end and shifted back onto the other end of the display.

- Digits in C: Each character in the display occupies 1, 2 or 3 digits in
the C register. Data is always taken off the right end of the C register.

Section 11: M-code for peripheral units 135

All possible combinations are given in the table below.

Instruction Hex Bits No. of chars Rotation Digits in C
READ DATA 038 3-0 12 left 1
WRIT 0(T) 028 3-0 12 right 1
READ 1(Z) 078 7-4 12 left 1
WRIT 1(Z) 068 7-4 12 right 1
READ 2(Y) 0B8 8 12 left 1
WRIT 2(Y) 0A8 8 12 right 1
READ 3(X) 0F8 7-0 6 left 2
WRIT 3(X) 0E8 7-0 6 right 2
READ 4(L) 138 8-0 4 left 3
WRIT 4(L) 128 8-0 4 right 3
WRIT 5(M) 168 7-0 6 left 2
READ 6(N) 1B8 8 1 left 1
WRIT 6(N) lA8 8-0 4 left 3
READ 7(O) 1F8 3-0 1 right 1
WRIT 7(O) lE8 3-0 1 right 1
READ 8(P) 238 7-4 1 right 1
WRIT 8(P) 228 7-4 1 right 1
READ 9(Q) 278 8 1 right 1
WRIT 9(Q) 268 8 1 right 1
READ 10(├) 2B8 3-0 1 left 1
WRIT 10(├) 2A8 3-0 1 left 1
READ 11(a) 2F8 7-4 1 left 1
WRIT 11(a) 2E8 7-4 1 left 1
READ 12(b) 338 7-0 1 right 2
WRIT 12(b) 328 7-0 1 right 2
READ 13(c) 378 7-0 1 left 2
WRIT 13(c) 368 7-0 1 left 2
READ 14(d) 3B8 8-0 1 right 3
WRIT 14(d) 3A8 8-0 1 right 3
READ 15(e) 3F8 8-0 1 left 3
WRIT 15(c) 3E8 8-0 1 left 3

Table 17, Display handling instructions

136 Section 11: M-code for peripheral units

Using the HP-82143A printer
There are two ways you can communicate with the HP-82143A printer: With
the ?PBSY instruction and with the SELP 9 instruction.

The ?PBSY instruction (hex 3AC) sets carry if the printer is busy.

The SELP 9 instruction (hex 264) transfers control of the HP-41 system to the
printer. The printer has control until an instruction with the rightmost bit set is
encountered.

While the printer has control, it understands the following instructions:

Mnemonic Hex Meaning
BUSY? 003 Set carry if the printer is busy (just like ?PBSY)
ERROR? 083 Set carry in case of a printer error.
POWON? 043 Set carry if the printer is on.
BUF=BUF+C 007 Copy the byte in C[1:0] to the printer buffer.
C=STATUS 03A Copy the printer status word to C[1:0]. Note that

the next word after this instruction must be 001h.

Table 18, Printer handling instructions

The structure of the printer status word is:

Bit Meaning
15-14 Indicates the printer mode. Both clear means MAN mode, bit 15

set indicates TRACE mode and bit 14 set means NOR mode. Bit
14 and 15 can never be set at the same time.

 13 The PRINT key on the printer is down.
 12 The PAPER ADVANCE key on the printer is down.
 11 The printer is OUT OF PAPER.
 10 The printer battery is low.
 9 The printer is idle (i.e. not printing).
 8 The printer buffer is empty.
 7 The printer is using lower case (user flag 13 set).
 6 The printer is in graphics mode (column mode).
 5 The printer is using double wide characters (user flag 12 set).
 4 The printer is printing right justified.
 3 The last byte sent was an End-Of-Line byte.
 2 A print error is occurring.
 1-0 Always set.

Table 19, Structure of printer status word

Section 11: M-code for peripheral units 137

The optical wand
You can communicate with the HP-82153A optical wand using two
instructions: ?WNDB (hex 22C) and READ DATA (hex 038).

?WNDB sets carry if there is data in the wand buffer.

To read data from the wand buffer, you must first deselect the user
memory and select the wand: 0l0h, RAM SLCT (270h), 0FEh, PRPH SLCT
(3F0h). READ DATA now reads one byte at a time from the buffer to
C[1:0]. The contents of the rest of the C register is destroyed.

Magnetic card reader
To access the HP-82104A magnetic card reader, you must deselect the user
memory and select the card reader: 0l0h, RAM SLCT (270h), 0FCh, PRPH
SLCT (3F0h).

The card reader now responds to the below 13 instructions. Note that some
of the instructions set the card reader interrupt flag. This flag can later be
tested with the ?CRDR (32Ch) instruction that sets carry if the card reader
interrupt flag is set.

138 Section 11: M-code for peripheral units

The instructions that are used with the card reader are the following:

Mnemonic Hex Meaning
READ DATA 038 Read one record from the card reader buffer to

C[13:7] and C[6:0].
WRIT DATA 2F0 Write one record from C[13:7] to the card reader

buffer. If there is a card in the card reader and the
motor is running, this instruction will write the data
to the card. If the data is not written immediately,
it must be written later using the WRIT 1(Z)
instruction.

WRIT 0(T) 028 End write cycle.
WRIT 1(Z) 068 Used when the motor is running to start a write

 cycle.
WRIT 2(Y) 0A8 End read cycle.
WRIT 3(X) 0E8 Used to prepare for reading (Set read mode).
WRIT 5(M) 168 Set card reader interrupt flag if the inserted card is

write protected. This instruction will only work
immediately after the motor has started.

WRIT 7(O) lE8 Set card reader interrupt flag if there is a card in
the card reader and the motor is running.

WRIT 11(a) 2E8 Depends on the operation mode:
- In read mode clears the card reader interrupt flag if
 a record can be read from the card reader buffer.
- In write mode sets the card reader interrupt flag
 if a record can be written to the buffer.

WRIT 12(b) 328 Stop the card reader motor.
WRIT 13(c) 368 Start the motor. If the WRIT 1(Z) (start write cycle)

instruction has been executed, the motor will begin
running slowly, even without any card inserted. If
the WRIT 1(Z) instruction has not been executed, the
motor will not start before a card is inserted. After
the card has passed the card reader, the motor will
run slowly.

WRIT 15(e) 3E8 Set the card reader interrupt flag if the card reader
external flag is set.

Table 20, Card reader handling instructions

Section 11: M-code for peripheral units 139

The Timer
The timer chip found in the HP-82182A module and in the HP-41CX is a
rather complicated device. Like most other peripheral units it has an interrupt
flag, the user memory must be deselected and the timer must be selected
before use. Use 0l0h, RAM SLCT (270h), 0FBh, PRPH SLCT (3F0h).

The timer contains a number of registers:
- Two clock registers (A and B).
- Two alarm registers (A and B).
- Two scratch registers (A and B).
- An A/B pointer.
- An accuracy factor register.
- An interval timer.
- A 13-bit status register.

One clock register, one alarm register and one scratch register will be
active at any time. Which is active is determined by the A/B pointer.

The times in clock and alarm registers is written as "number of 1/100
seconds since start", decimally, right aligned. The time is given as time
since January 1, 1900. This means that, as far as the timer is concerned,
the end of the world occurs at 9:46:40 AM on the morning of December 20,
2330.

Clock register A will usually contain the current time and clock register B will
contain the stopwatch time.

The alarm register A will usually contain the time of the next alarm. If no
alarms are set, the alarm register A will be cleared. The alarm register B will
usually contain the constant 09999999999000h. If the timer ROM at any time
finds out that there is anything but this constant in alarm register B, it will
assume that power has been disconnected, and all information in the timer will
be cleared. This procedure is the same as with the 169h constant in the user
memory status register c.

Scratch register A is used to hold the time when the clock was last
corrected. This is used by the CORRECT function to calculate a new
accuracy factor. Bit 5 of the scratch register B is set if the clock displays
in 24-hour format (CLK24) and bit 6 of scratch register B is set if the clock
function displays both time and date (CLKTD).

140 Section 11: M-code for peripheral units

The following instructions are available:

Mnemonic Hex Meaning
WRIT 0(T) 028 Copy the C register to the active clock register of

the timer.
READ DATA 038 Copy the content of the active clock register to the

C register.
WRIT 1(Z) 068 As WRIT 0(T), used after READ 1(Z). Takes into

account the time used since reading the time.
READ 1(Z) 078 As READ DATA, used when correcting the time using

T+X.
WRIT 2(Y) 0A8 Copy the C register to the active alarm register.
READ 2(Y) 0B8 Copy the active alarm register to the C register.
WRIT 3(X) 0E8 If the A/B pointer is set to A:

Copy bits 0-5 of the C register to the timer status
register. Note that bits 0-5 of the timer status
register may only be cleared, not set, by this
instruction.
If the A/B pointer is set to B:
Write bits 4-16 of the C register to the timer
accuracy factor register. Bits 4 through 15 can give
a value of 0.0 through 99.9, bit 16 indicates the sign
of the factor.

READ 3(X) 0F8 If the A/B pointer is set to A:
Copy all 13 status bits to the 13 least significant
(rightmost) bits of the C register.
If the A/B pointer is set to B:
Copy the accuracy factor register to bits 4 through
16 of the C register.

WRIT 4(L) 128 Copy C register to the active scratch register.
READ 4(L) 138 Copy the active scratch register to the C register.
WRIT 5(M) 168 Copy the 5 least significant digits of the C register

to the interval timer and start the interval timer.
The timer can assume values of 0.01 through 999.99
seconds.
Each time the interval timer period has passed, the
timer interrupt flag is set. This function is used by
the CLOCK function that updates the display every
second or every minute.

READ 5(M) 178 Copy the value of the interval timer to C[4:0].

Section 11: M-code for peripheral units 141

WRIT 7(O) lE8 Stop the interval timer.
WRIT 8 (P) 228 Clear test mode A or B, depending on the A/B

pointer.
WRIT 9(Q) 268 Set test mode A or B, depending on the A/B pointer.

The test instructions are used in connection with
measurements on the timer chip.

WRIT 10(├) 2A8 Disable the active alarm (A or B), but does not clear
them. When the calculator is turned off, alarm A is
re-enabled. Timer alarms (negative stopwatch time)
cannot be disabled.

WRIT 11(a) 2E8 Re-enable the disabled alarm.
WRIT 12(b) 328 Stop the clock in the active clock register. Clock

register A will be re-started as soon as the CPU
stops.

WRIT 13(c) 368 Start the clock in the active clock register.
WRIT 14(d) 3A8 Set the A/B pointer to B.
WRIT 15(e) 3E8 Set the A/B pointer to A.

Table 21, Timer handling instructions

The structure of the status register is:
Bit Meaning
 0 Set if the time in Alarm A is the same as in Clock A,
 1 Set if an overflow has occurred in Clock A.
 2 Set if the time in Alarm B is the same as in Clock B.
 3 Set if an overflow has occurred in Clock B.
 4 Set if the interval timer has counted a whole interval.
 5 Set if the timer chip supply voltage has been lower than certain

minimum.
 6 Set if Clock A is counting forwards (may be cleared and set using

WRIT b and WRIT c with the pointer set to A).
 7 Set if Clock B is counting forwards (may be cleared and set using

WRIT b and WRIT c with the pointer set to B).
 8 Set if Alarm A is enabled. Since time alarms are usually enabled, this

flag is usually set.
 9 Set if Alarm B is enabled. Always clear since stopwatch alarms are not

possible. Timer alarms occur as a result of overflow in the
stopwatch register (bit 3).

10 Set if the interval timer is running.
11 Timer is in test A mode.
12 Timer is in test B mode.

Table 22, Structure of timer status registers

142 Section 11: M-code for peripheral units

The timer is a system addressed device and will always address itself to ROM
block 5. The timer ROM contains a number of routines that makes use of the
timer somewhat easier than the above instructions suggest.

The HP-IL interface
The HP-82160A HP-IL interface module is the most complicated peripheral
device used with the HP-41. To program the HP-IL loop, it is strongly
recommended that you read the book "The HP-IL System" by Kane, Harper
and Ushijima, or "Control the world with HP-IL" by Gary Friedman. These
books describe how to program the HP-IL loop.

The HP-IL interface contains 7 registers, each of them one byte long. The
HP-IL, registers are used as follows:

Register 0, Status Register.
Bit 0: Master clear
Bit 1: Clear IFC received
Bit 2: When writing: Set Local Ready.

When reading: RFC received
Bit 3: Send Service Request
Bit 4: Listener active
Bit 5: Talker active
Bit 6: Controller active
Bit 7: System controller

Register 1, Control Interrupt Register.
When writing:
Bit 0: Enable FI line
Bit 1-4: Unused
Bit 5-7: Output Control Bits
When reading:
,Bit 0: Output Register Available
Bit 1: Frame Received Not as Sent
Bit 2: Frame Available
Bit 3: Service Request Received
Bit 4: Interface Clear Received
Bit 5-7: Input Control Bits

Register 2, Data Bits Register.
Bit 0-7: When writing: Input Data Bits

When reading: Output Data Bits

Section 11: M-code for peripheral units 143

Register 3: Parallel Poll Register.
Bit 0-2: Parallel Poll Response Bit Designation
Bit 3: Parallel Poll Polarity
Bit 4: Parallel Poll Enable
Bit 5: Parallel Poll Individual Status
Bit 6: Automatic IDY Sourcing in Idle Mode
Bit 7: Oscillator Disable

Register 4: Loop Address Register.
Bit 0-4: Address Bits
Bit 5-7: Scratch Bits

Register 5, 6 and 7 are all scratch registers.

Table 23, HP-IL interface register structure

The HP-IL interface will respond to the following interrupt flag
instructions:

Mnemonic Hex Meaning
?IFCR 16C Set carry if interface ready
?SRQR 2AC Set carry if the interface requests service
?FRAV 12C Set carry if a frame is available from the loop
?FRNS 26C Set carry if does not return as it was sent
?ORAV 0EC Set carry if an output register is available

Table 24, HP-IL interface interrupt flag instructions

The HPIL=C r instruction copies C[1:0] to HP-IL register r, 0 < = r < = 7.

There are 8 different SELP instructions (one for each HP-IL register) that
gives the HP-IL interface control of the HP-41 system. Control is given
back to the HP-41 CPU when the least significant bit of an instruction is
set.

144 Section 11: M-code for peripheral units

The following possibilities exist:
SELP r, cccccccc01b Place the binary constant cccccccc in HP-IL register

r, 0 < = r < = 7.
SELP 0, 03Ah, 003h Copy HP-IL register 0 to C[1:0].
SELP l, 07Ah, 043h Copy HP-IL register 1 to C[1:0].
SELP 2, 0BAh, 083h Copy HP-IL register 2 to C[1:0].
SELP 3, 0FAh, 0C3h Copy HP-IL register 3 to C[1:0].
SELP 4, 13Ah, 103h Copy HP-IL register 4 to C[1:0].
SELP 5, 17Ah, 143h Copy HP-IL register 5 to C[1:0].
SELP 6, 1BAh, 183h Copy HP-IL register 6 to C[1:0].
SELP 7, 1FAh, 1C3h Copy HP-IL register 7 to C[1:0].

Table 25, HP-IL interface handling instructions

The 03Ah through 1FAh instructions are C=PREG r (0 < = r < = 7)
instructions and copy the contents of HP-IL register (peripheral register) r
to C[1:0].

The 003h through 1C3h instructions are ?PFSET r (0 < = r < = 7) instructions
and set carry if peripheral flag r is set.

Note that these instructions are pairs, both must be used and they must
have the same parameter r. E.g. a C=PREG 3 and ?PFSET 3 must be
preceded by SELP 3, and not by any other instruction.

The HP-IL interface is a system addressed device and will always address
itself to ROM block address 7.

Section 12:

Developing your own ROM
This section describes how to build your own ROM. It will explain about
function names, how to use some of the most useful HP-41 system
subroutines and finally give a commented example of a small user
developed ROM.

Function and program names
Each time you specify a function or program to be executed, you specify it
by name. The HP-41 first checks if this is the name of a FOCAL program
in main memory, then if the name appears in a peripheral unit and finally
if it is the name of a built-in function.

When the HP-41 is looking for a function or FOCAL program in system
memory, it checks the Function Address Table (FAT) of each system address
block. Recall that each FAT entry indicated whether it referred to an M-
code routine or a FOCAL program, and it contained the address of the first
executable word.

Other HEPAX file types (like data and text files) are also stored in system
memory, but since the HP-41 never needs to execute them, they can be
stored in a different format. Therefore, the other HEPAX file types don't
take up any FAT entries.

If the FAT entry refers to a FOCAL program, the HP-41 knows that there
is a LBL at the given address. It is simple for the HP-41 to look at that
address and the following to find the name of the program.

The format for M-code routine names is a little more complicated. Since
the FAT entry points to the first executable instruction, the HP-41 must
start here. It then looks backwards, word by word, to find the characters
that make up the function name.

The function name is written using ROM character codes, described in
section 11. If any special ROM characters are used (bit 8 of the character
code set), you must add 40h to the character code instead of setting bit 8.
I.e. use the character "a", character code l0lh, clear bit 8 and add 40h
- the result is 041h. Add 80h to the character code of the last character
of the function name. Function names may be up to 11 characters long, but
function names longer than 7 characters should not be used - you can't

146 Section 12: Developing your own ROM

execute these functions! These functions are seen as ROM names by the HP-
41CX. You might want to start you own ROM with a header - this is shown in
the example at the end of this section.

Let's take an example of how to code the function name:
You have an M-code routine called "SORT", with the first executable M-
code instruction at address x440. It is first in the FAT. The FAT entry
would be:

x002 004 Specifies M-code routine, starting at
x003 040 address x440.

The start of the routine would be:
x43C 094 Character code for "T" + 080h = 094h
x43D 012 Character code for "R" = 012h
x43E 00F Character code for "O" = 00Fh
x43F 013 Character code for "S" = 013h
x440 iii First executable instruction

Prompting

You can make your own functions prompt in two different ways. This is
done by adding a constant to the two first characters of the function name.

The possibilities are:
000,x00 No prompt
100,100 Prompt for three digits (4 if the EEX key is pressed)
100,200 Prompt for ALPHA input (null input accepted)

Table 26, Function prompting

I.e. to make the SORT function above prompt for ALPHA input, the code
should be:

x43C 194 Character code for "T" + 080h = 194h
x43D 012 Character code for "R" = 012h
x43E 20F Character code for "O" + 200h = 20Fh
x43F 113 Character code for "S" + 100h = 113h
x440 iii First executable instruction

Note that some literature en HP-41 M-code programming lists a long range
of other prompting possibilities. There are more prompting possibilities, but
they only work correctly when used in blocks 0 through 2. The above three
prompts are the only prompts that can be used in the rest of system
memory.

Section 12: Developing your own ROM 147

Non-programmable functions

A function can be made non-programmable, and directly executing (not
NULLable). If you place a NOP as the first executable instruction, the
function is non-programmable. If the first two executable words are NOPs,
the function will be executed as soon as you press the key (you can't hold the
key to NULL the function). Exit by executing 0098 and then jumping
to 00F0.

Selected HP-41 system subroutines
The HP-41 operating system contains many useful subroutines that handle
some of the more trivial housekeeping tasks. A number of these subroutines
are given below. To use them, place any input data as specified and use an
absolute XQ or GO to the address.

Display handling routines
07F6 Disable RAM and enable display.

0899 Makes the display blink once. The Operating system uses this to
indicate an illegal keystroke (like if you press XEQ ALPHA ALPHA).

0952 Disable peripheral units, enable RAM (status registers).

10E0 Clears the display, identical with CLD.

2BF7 Flush the contents of the display left.

2C5D Send an ASCII character to the display. The character code must be
in and the display must be enabled.

2CF0 Enables the display and clears it.

148 Section 12: Developing your own ROM

Keyboard handling routines

0098 This routine resets the keyboard, i.e. it waits until the key that is
down is released, and then waits a short while longer to make sure
the key is released. This is called debounce, and ensures that the
calling routine will only see one keystroke.
This routine is useful if your routine needs direct key entry, or you
could use it at the end of your routine so that any key pressed
during your routine will not be interpreted again.

0E50 Alternative key input routine. Will place the calculator in stand-by
mode until a key is pressed, then it returns to the calling address
with the keycode in N[2:1]. The key codes are shown below.

Section 12: Developing your own ROM 149

Fig. 23, Keycodes returned by 0E50 subroutine

150 Section 12: Developing your own ROM

Message routines

07EF Message routine. When calling, the display must be enabled and the
desired message must be placed as constants in the words immediately
after the XQ 07EF instruction. The constants must be ROM character
codes, and the last character is indicated by adding 200h to the
character code. A maximum of 12 characters is allowed.

When returning to the operating system, the message will be cleared,
unless user flag 50 is set.

Example:
?NC XQ Enable display and clear it.
->2CF0
?NC XQ The following message will be displayed.
 ->07EF
008h "H"
005h "E"
00Ch "L"
00Ch "L"
20Fh "O" 200h is added to the last character.
?NC XQ Flush the message left.
->2BF7
?NC XQ Disable display and enable status registers.
->0952

1C0F Start of error message table.

22F5 This routine gives an error message as indicated by the constant
following the call. The following combinations are available:

018 ALPHA DATA (14E2)
022 DATA ERROR (282D)
02D MEMORY LOST
038 NONEXISTENT (02E0)
03C NULL
043 PRIVATE (2184)
04F OUT OF RANGE (00A2)
056 PACKING
05F TRY AGAIN (2F17)
062 YES
064 NO
067 RAM (2172)
06A ROM (21F0)

Section 12: Developing your own ROM 151

Some messages are available directly with their own entry point,
shown to the right of the message above. A call directly to an entry
point takes up only two words, whereas a call via the 22F5 routine
takes three words.

After this routine, the CPU returns to the operating system and
checks the error ignore flags (user flag 25). The CPU does not return
to the calling routine.

Example:
To get the MEMORY LOST message, use the following code:
?NC XQ
- > 22F5
02Dh The MEMORY LOST constant.

ALPHA register handling routines

10Dl Clears the ALPHA register, identical with the CLA function.

2D0E Appends one character to the ALPHA register. The character code
must be in the G register. A warning tone will sound if the ALPHA
register is now full.

2D14 As above, but does not give any warning if the ALPHA register is
full.

Main memory handling routines

0232 The start of the MEMORY LOST routine!

05A1 Number of free registers in main memory is returned to C[2:0].

2000 Pack main memory, key assignments and i/o area.

152 Section 12: Developing your own ROM

Return points
0000 The CPU always starts from this address, with carry set if it starts

from calculator off.

00F0 This routine updates the display, checks all ROMs (e.g. checks timer
for alarms) and places the calculator in stand-by mode. This address
is placed on the return stack before any call to external ROMs. If
your routine ends with a RTN instruction and hasn't changed the
return stack, your routine will automatically return to this address.

27F3 When using the interrupt jump locations, always return to this
address to continue checking the interrupt locations of the following
ROMs. When returning via this routine, the contents of C[10:3] must
be restored, i.e. the interrupt routine should save C[10:3] before
doing anything, and restore this data before calling 27F3.

WARNING: If you are not quite certain how to use the interrupt jump
locations, don't use them at all. They will very often result in
MEMORY LOST.

Miscellaneous routines
00D7 Calling address is placed in C[6:3].

02E3 Takes the scientific notation number in the C register and convert it
to a hexadecimal number in C[2:0]. If the number is larger than 999,
the message NONEXISTENT is given, if the contents of C is alpha
data, the message ALPHA DATA is given.

16DE Start of the TONE function. A tone number must be in the ST
register.

1EF5 Toggle the shift flag. The display is not updated.

Using port dependent jumps
A port dependent jump is actually a call to a system subroutine, followed
by a constant. The system subroutine called tells the HP-41 if you want a
GO or an XQ instruction, and which quarter of the block you wish to GO
to or XQ. There are also two system subroutines for port dependent jumps
within the same quarter of the current block.

Note that the CPU must be in hexadecimal mode (SETHEX) and that all the
system subroutines for port dependent jump and execute overwrite the
previous contents of the C register.

Section 12: Developing your own ROM 153

All ten system subroutines for port dependent jump and execute instructions
are of the "if not carry" type. If you need to jump or execute if carry, you
should use a relative jump to skip the subroutine call.

Example: If flag 10 is set, you need to GO to address xDF7 in the same block.
Use the following code:

?FSET 10 Set carry if CPU flag set
JNC +04 Jump four addresses forward if carry not set
?NC XQ Call subroutine for port dependent GO to last quarter.
-> 23EB
1F7h Data for the subroutine.
iii Following instructions.

Which subroutine call to use is shown in the below table.

 GO XQ
1. quarter (x000-x3FF) 23D0 23D2
2. quarter (x400-x7FF) 23D9 23DB
3. quarter (x800-xB99) 23E2 23E4
4. quarter (xC00-xFFF) 23EB 23ED
Same quarter 0FD9 0FDD

Table 27, Subroutine addresses for port dependent jumps

Example of a user-developed ROM
Now that we know all about HP-41 M-code programming, it's about time we
start writing some of our own functions in M-code.

Our first ROM will contain a ROM name and two simple functions.

The first function will be called "Y<> Z" and will swap the contents of stack
registers Y and Z. The second function will be called "X-ROM" and will
write a word anywhere in HEPAX memory. Input for "X-ROM" will be a
word of the form aaaaccc right justified in the X register. aaaa is the
address and ccc is the code to be written.

Before we start writing our code, we must take a block out of the HEPAX
file system. We'll refer to this block as "x". Remember that this must be
the last block of HEPAX memory.

154 Section 12: Developing your own ROM

Keystrokes: Display:
XEQ HEXEDIT ADR: _ _ _ _ Start the editor
xFF3 xFF3 100 _ _ _ The block is in the file system.
300 xFF4 000 _ _ _ Place 300h to take the block out

of the file system.
<- ADR: _ _ _ _
xFE7 xFE7 00E _ _ _ Clear xFE7 and xFE8.
000 xFE8 000 _ _ _
000 xFE9 091 _ _ _
<- ADR: _ _ _ _
<- 0.0000 Leave the editor.

Now press the ON key twice to turn the calculator off and back on. Block
'x' is no longer part of the file system.

x000 x000 00D _ _ _ The first word of the block.

Now enter the hexadecimal code shown in the second column. When all the
code has been entered, use the DISASM function to produce a disassembled
listing. The listing should be the same as the text in the third column
below.

x001 003 3 FUNCTIONS Three functions.
x002 000 FCT:MY OWN ROM FAT entry for the ROM name.
x003 08D ADR: x08D Address of the ROM name.
x004 000 FCT:Y<>Z The FAT entry for our "Y

exchange with Z" function.
x005 092 ADR: x092 The start address of the

Y<>Z function.
x006 000 FCT: X-ROM The FAT entry far the "X to

ROM" function.
x007 09E ADR: x09E The start address of the

X-ROM function.
x008 000 NOP Two NOP words to mark
x009 000 NOP the end of the FAT.
.
.

Section 12: Developing your own ROM 155

x082 000 NOP
x083 08D "M" The ROM name written in
x084 00F "O" reverse order. Note that
x085 012 "R" 080h has been added to the
x086 020 " " character code of the last
x087 00E "N" character in the name. A ROM
x088 017 "W" name must be longer than
x089 00F "O" 7 characters - add spaces if
x08A 020 " " needed.
x08B 019 "Y" A ROM name cannot be
x08C 00D "M" executed - it returns
x08D 3E0 RTN immediately.
x08E 09A "Z" Name of next function
x08F 03E ">" written in reverse.
x090 03C "<" Note that 080h is added
x091 019 "Y" to last character.
x092 0B8 READ 2(Y) Read stack Y register to C.
x093 10E A=C ALL Save in A register.
x094 078 READ 1(Z) Read stack Z register to C.
x095 0A8 WRIT 2(Y) Write in stack register Y.
x096 0AE A<>C ALL Get previous Y contents.
x097 068 WRIT 1(Z) Write in stack register Z.
x098 3E0 RTN Return to operating system.
x099 08D "M" Name of next function.
x09A 00F "O"
x09B 012 "R"
x09C 02D "-"
x09D 018 "X"
x09E 0F8 READ 3(X) Read stack X register to C.
x09F 040 WRIT S&X Write C to HEPAX memory.
x0A0 3E0 RTN Return to operating system.
.
.

156 Section 12: Developing your own ROM

xFF4 000 NOP Don't change the interrupt
xFF5 000 NOP locations.
xFF6 000 NOP
xFF7 000 NOP
xFF8 000 NOP
xFF9 000 NOP
xFFA 000 NOP
.
.
xFFB 001 "A"
xFFC 031 "1" Revision 1A.
xFFD 012 "R"
xFFE 00D "M" ROM ID is "MR"
xFFF 000 CHKSUM=000 HEX No checksum calculated.

Appendices

Appendix A:

Messages from the HEPAX module
This appendix lists all the messages given by the HEPAX module, and some
that are related to the use of the HEPAX module.

Some messages are error messages and indicate that a function has not been
completed due to an error. Other messages are status messages and are simply
for your information. Status messages are marked with an *.

Message Functions Meaning
DATA ERROR HEPDIRX No entry has number 0.

XFA X< >F Input > 255.
XFA XTOA

DUP FL NAME HWRTFL File name already in use.

FL NOT FOUND HREADFL No such file on mass storage.

FL TYPE ERR WRTROM File name already in use.

GTO xx SHORT* HSAVEP Cannot compile GTO jump.

H:DIR EMPTY* HEPDIR No files in the HEPAX file system.

H:DUP FL HCRFLAS File name already in use.
HCRFLD
HREADFL
HSAVEA
HSAVEK
HSAVEP

H:DUP FL NAME HRENAME File name already in use.

H:END OF FL HAPPCHR You attempted to read, write or
HAPPREC insert past the end of the file.
HARCLRC
HDELREC
HGETREC
HGETRX
HGETX
HINSCHR
HINSREC

Appendix A: Messages from the HEPAX module 159

H:END OF FL HSAVER You attempted to read, write or
(continued) HSAVERX insert past the end of the file.

HSAVEX
HSEKPT
HSEKPTA

H:END OF REC HSEKPT You attempted to place the pointer
HSEKPTA after the end of the record.

H:FAT FULL HSAVEP All entries in a block is used.
Create a dummy data file and try
again.

H:FL NOT FND "HRESZFL" The specified file is not found, or
HAPPCHR there is no current file
HAPPREC
HARCLRC
HASROOM
HCLFL
HDELCHR
HDELREC
HFLSIZE
HGETA
HGETK
HGETR
HGETREC
HGETRX
HGETX
HINSCHR
HINSREC
HPOSFL
HPURFL
HRCLPT
HRCLPTA
HRENAME
HSAVER
HSAVERX
HSAVEX
HSEC
HSEKPT
HSEKPTA
HUNSEC
HWRTFL
PRIVATE

160 Appendix A: Messages from the HEPAX module

H:FL SECURED HAPPCHR You have tried to change a secured
file.

HAPPREC If you want to change it, you must
HCLFL first unsecure it with HUNSEC.
HDELCHR
HDELREC
HINSCHR
HINSREC
HPURFL
HSAVEA
HSAVEK
HSAVEP
HSAVER
HSAVERX
HSAVEX
HWRTFL

H:FL SIZE ERR "HRESZFL" Data would be lost if you resized
the file to the specified size. Use a
negative size in X to resize anyway.

H:FL TYPE ERR "HRESZFL" You have tried to use a file of the
HAPPCHR wrong type.
HAPPREC
HARCLRC
HASROOM
HCLFL
HDELCHR
HDELREC
HGETA
HGETK
HGETR
HGETREC
HGETRX
HGETX
HINSCHR
HINSREC
HPOSFL
HRCLPT
HRCLPTA
HSAVER
HSAVERX

Appendix A: Messages from the HEPAX module 161

H:FL TYPE ERR HSAVEX You have tried to use a file of the
(continued) HSEKPT wrong type.

HSEKPTA

H:KEYCODE ERR XFA PASN No key with the specified keycode
exist.

H:NAME ERR HCLFL No filename is specified.
HCRFLAS
HCRFLD
HGETA
HGETK
HRENAME
HPURFL
HREADFL
HSAVEA
HSAVEK
HSAVEP
HWRTFL

H:NO FILESYS All HEPAX There is no file system in any
file system HEPAX module. See page 61.
functions

H:NO HPIL HREADFL No HP-IL module is plugged in.
HWRTFL
READROM
WRTROM

H:NO KEYS HSAVEK There are no key assignments to
save.

H:NO ROOM HCRFLAS There is not room in the HEPAX
 file

HCRFLD system for a file of the specified
HSAVEA size.
HSAVEK
HSAVEP

NO LBL xx* HSAVEP There is no LBL xx in the saved
program.

162 Appendix A: Messages from the HEPAX module

NONEXISTENT HSAVEP The specified program does not
exist.

XFA PCLPS

XFA PASN The specified function does not
exist.

XFA CLRGX Some of the specified registers
XFA REGMOVE do not exist.
XFA REGSWAP
XFA X=NN?
XFA X≠NN?
XFA X < NN?
XFA X< =NN?
XFA X > NN?
XFA X> =NN?

PACKING XFA PSIZE There is not room for the specified
TRY AGAIN size.

NO DRIVE HREADFL No mass storage device is connected
HWRTFL to the HP-IL
READROM
WRTROM

HEPAX ROM HEXEDIT You attempted to edit or disassemble
DISASM the HEPAX ROM

ILL CONFIG ON You turned the calculator on with
an illegal configuration.

H:REC TOO LNG HAPPCHR You attempted to create a record
HINSCHR longer than 254 characters.

H:CHKSUM ERR READROM An error occurred when reading a
ROM image from mass storage.

x:WRT PRTCTED* RAMTOG Block x is write protected.

x:NOT PRTCTED* RAMTOG Block x is not write protected.

x:NOT RAM RAMTOG Block x is not RAM.

x:RAM ERROR RAMTOG Block x is not HEPAX RAM.

Appendix B:

Function overview

This appendix gives an overview of all the file system functions and XFA
functions in the HEPAX module. The necessary input parameters are given.
To obtain more information about a given function, look it up at the page
reference given in the function index inside the back cover.

If a function has several different possible inputs, the possibilities are
shown on separate lines.

Function Inputs:
HAPPCHR ALPHA: alpha characters
HAPPREC ALPHA: alpha data
HARCLRC (none)
HASROOM (none)
HCLFL ALPHA: file name
HCRFLAS X: file size ALPHA: file name
HCRFLD X: file size ALPHA: file name
HDELCHR (none)
HDELREC (none)
HEPDIR (none)
HEPDIRX X: file no.
HEPROOM (none)
HFLSIZE ALPHA: (empty)

ALPHA: file name
HGETA ALPHA: file name
HGETK ALPHA: file name
HGETR ALPHA: (empty)

ALPHA: data file name
HGETREC (none)
HGETRX X: bbb.eee control number
HGETX (none)
HINSCHR ALPHA: alpha characters
HINSREC ALPHA: alpha data
HPOSFL ALPHA: search string
HPURFL ALPHA: file name
HRCLPT (none)

164 Appendix B: Function overview

HRCLPTA ALPHA: (empty)
ALPHA: file name

HREADFL ALPHA: file name
ALPHA: Mass Storage file name,HEPAX file name

HRENAME ALPHA: old file name,new file name
"HRFSZFL" X: new file size ALPHA: file name
HSAVEA ALPHA: file name
HSAVEK ALPHA: file name
HSAVEP ALPHA: file name

ALPHA:,file name
ALPHA: program name,file name

HSAVER ALPHA: data file name
HSAVERX X: bbb.eee control number
HSAVEX X: data value
HSEC ALPHA: file name
HSEKPT X: pointer value
HSEKPTA X: pointer value ALPHA: file name
HUNSEC ALPHA: file name
HWRTFL ALPHA: file name

ALPHA: HEPAX file name,Mass Storage file name
PRIVATE ALPHA: file name
CLRAM X: block no. ALPHA: "OK"
CODE ALPHA: String of hexadecimal characters
COPYROM X: destination block Y: source block
DECODE X: code to be decoded
DECODYX X: no. of digits Y: code
DISASM Input from keyboard
HEPAX Input from keyboard
HEPAXA Input from keyboard
HEXEDIT Input from keyboard
HPROMPT X: No. of digits ALPHA: prompt string
RAMTOG X: HEPAX RAM block no.
READROM X: bb.ee ALPHA: file name
WRTROM X: bb.ee ALPHA: file name
XF Input from keyboard
XFA Input from keyboard

HEPAXA AND X: code Y: code
HEPAXA BCAT (none)
HEPAXA BCD-BIN X: number
HEPAXA BIN-BCD X: code
HEPAXA CTRAST X: contrast value

Appendix B: Function overview 165

HEPAXA DELETE X: 00bbbbeeeellll
HEPAXA INSERT X: 00bbbbeeeellll
HEPAXA NOT X: code
HEPAXA OR X: code Y: code
HEPAXA ROTYX X: number to rotate Y: code
HEPAXA SHIFTYX X: number to shift Y: code
HEPAXA XOR X: code Y: code
HEPAXA X+Y X: code Y: code
HEPAXA X-$ X: code
HEPAXA Y-X X: code Y: code

XFA ALENG (none)
XFA ANUM ALPHA: string
XFA AROT no. of characters to rotate
XFA ATOX ALPHA: text
XFA CLKEYS (none)
XFA CLRGX X: bbb.eee
XFA GETKEY (none)
XFA GETKEYX X: tt.t wait time
XFA PASN X: keycode ALPHA: program/function name

X: keycode ALPHA: (empty)
XFA PCLPS (none)

ALPHA: program name
XFA POSA X: char. code/string ALPHA: string
XFA PSIZE X: new size
XFA RCLFLAG (none)
XFA REGMOVE sss.dddnnn
XFA REGSWAP sss.dddnnn
XFA ΣREG? (none)
XFA SIZE? (none)
XFA STOFLAG X: flag status

X: bb.ee flag numbers Y: flag status
XFA X < > F X: flag value
XFA XTOA X: character code
XFA X = NN? X: test data Y: register number
XFA X ≠ NN? X: test data Y: register number
XFA X < NN? X: test data Y: register number
XFA X < = NN? X: test data Y: register number
XFA X > NN? X: test data Y: register number
XFA X > = NN? X: test data Y: register number

Appendix C:

Reference tables
for M-code programming

This appendix gives the actual hexadecimal codes for the M-code
instructions described in section 10.

When writing M-code programs, write them in assembly language using the
mnemonics in section 10. Then translate the mnemonics into hex codes using
the tables in this section.

Class 0 parameter instructions
 Parameter 0 1 2 3 4 5 6 7
 (T) (Z) (Y) (X) (L) (M) (N) (0)
Mnemonic
CLRF 384 304 204 004 044 084 144 284
SETF 388 308 208 008 048 088 148 288
?FSET 38C 30C 20C 00C 04C 08C 14C 28C
PT= 39C 31C 21C 01C 05C 09C 15C 29C
?PT= 394 314 214 014 054 094 154 294
LD@PT- 010 050 090 0D0 110 150 190 1D0
RCR *** 33C 23C 03C 07C 0BC 17C 2BC
WRIT 028 068 0A8 0E8 128 168 lA8 lE8
READ *** 078 0B8 0F8 138 178 1B8 1F8
HPIL=C 200 240 280 2C0 300 340 380 3C0
SELP 024 064 0A4 0E4 124 164 lA4 lE4

Appendix C: Reference tables for M-code programming 167

Class 0 parameter instructions, continued
 Parameter 8 9 10 11 12 13 14 15
 (P) (Q) (├) (a) (b) (c) (d) (e)
Mnemonic
CLRF 104 244 0C4 184 344 2C4 *** ***
SETF 108 248 0C8 188 348 2C8 *** ***
?FSET 10C 24C 0CC 18C 34C 2CC *** ***
PT= 11C 25C 0DC 19C 35C 2DC *** ***
?PT= 114 254 0D4 194 354 2D4 *** ***
LD@PT- 210 250 290 2D0 310 350 390 3D0
RCR 13C 27C 0FC 1BC 37C 2FC *** ***
WRIT 228 268 2A8 2E8 328 368 3A8 3E8
READ 238 278 2B8 2F8 338 378 3B8 3F8
HPIL=C *** *** *** *** *** *** *** ***
SELP 224 264 2A4 2E4 324 364 3A4 3E4

Class 0 special instructions
?ALM 36C
?C RTN 360
?CRDR 32C
?EDAV 0AC
?FRAV 12C
?FRNS 26C
?IFCR 16C
?KEY 3CC
?LOWBAT 160
?NC RTN 3A0
?ORAV 0EC
?P=Q 120
?PBSY 3AC
?SERV 2EC
?SRQR 2AC
?WNDB 22C

168 Appendix C: Reference tables for M-code programming

Class 0 special instructions, continued
A=B=C=0 lA0 N=C ALL 070
C<>G @PT,+ 0D8 NOP 000
C<>M ALL 1D8 POP ADR 1B0
C<>N ALL 0F0 POWOFF 060
C<>ST XP 3D8 PRPH SLCT 3F0
C=C AND A 3B0 PT=PT+1 3DC
C=C OR A 370 PT=PT-1 3D4
C=G @PT,+ 098 PUSH ADR 170
C=KEY KY 220 RAM SLCT 270
C=M ALL 198 READ DATA 038
C=N ALL 0B0 ROM BLK 030
C=ST XP 398 RTN 3E0
CLRKEY 3C8 SETDEC 2A0
DSPOFF 2E0 SETHEX 260
DSPTOG 320 SLCT P 0A0
ENBANK1 100 SLCT Q 0E0
ENBANK2 180 ST<>T 2D8
ENBANK3 140 ST=0 3C4
ENBANK4 1C0 ST=C XP 358
FETCH S&X 330 ST=T 298
G=C @PT,+ 058 T=ST 258
GOTO ADR lE0 WPTOG 1F0
GOTO KEY 230 WRIT DATA 2F0
LDI S&X 130 WRIT S&X 040
M=C ALL 158 XQ->GO 020

Appendix C: Reference tables for M-code programming 169

Class 1 instructions

Refer to the “JUMP” program on page 127. This FOCAL program calculates
all types of class 1 instructions.

Class 2 instructions

 Field ALL M S&X MS XS @PT PT<- P-Q
Instruction
A=0 00E 01A 006 01E 016 002 00A 012
B=0 02E 03A 026 03E 036 022 02A 032
C=0 04E 05A 046 05E 056 042 04A 052
A=C 10E 11A 106 11E 116 102 10A 112
C=B 0CE 0DA 0C6 0DE 0D6 0C2 0CA 0D2
B=A 08E 09A 086 09E 096 082 08A 092
A<>C 0AE 0BA 0A6 0BE 0B6 0A2 0AA 0B2
C<>B 0EE 0FA 0E6 0FE 0F6 0E2 0EA 0F2
A<>B 06E 07A 066 07E 076 062 06A 072
C=C+A 20E 21A 206 21E 216 202 20A 212
A=A+C 14E 15A 146 15E 156 142 14A 152
A=A+B 12E 13A 126 13E 136 122 12A 132
C=C+C 1EE 1FA 1E6 1FE 1F6 1E2 1EA 1F2
C=A-C 24E 25A 246 25E 256 242 24A 252
A=A-C 1CE 1DA 1C6 1DE 1D6 1C2 1CA 1D2
A=A-B 18E 19A 186 19E 196 182 18A 192
C=C+1 22E 23A 226 23E 236 222 22A 232
A=A+1 16E 17A 166 17E 176 162 16A 172
C=C-1 26E 27A 266 27E 276 262 26A 272
A=A-1 1AE 1BA 1A6 1BE 1B6 1A2 1AA 1B2
?C≠0 2EE 2FA 2E6 2FE 2F6 2E2 2EA 2F2
?A≠0 34E 35A 346 35E 356 342 34A 352
?B≠0 2CE 2DA 2C6 2DE 2D6 2C2 2CA 2D2
?A≠C 36E 37A 366 37E 376 362 36A 372
?A<C 30E 31A 306 31E 316 302 30A 312
?A<B 32E 33A 326 33E 336 322 32A 332
RSHFC 3CE 3DA 3C6 3DE 3D6 3C2 3CA 3D2
RSHFA 38E 39A 386 39E 396 382 38A 392
RSHFB 3AE 3BA 3A6 3BE 3B6 3A2 3AA 3B2
LSHFA 3EE 3FA 3E6 3FE 3F6 3E2 3EA 3F2
C=0-C 28E 29A 286 29E 296 282 28A 292
C=-C-1 2AE 2BA 2A6 2BE 2B6 2A2 2AA 2B2

170 Appendix C: Reference tables for M-code programming

Class 3 instructions
 Type JNC+ JC+ JNC- JC-
Distance
01 00B 00F 3FB 3FF
02 013 017 3F3 3F7
03 01B 01F 3EB 3EF
04 023 027 3E3 3E7
05 02B 02F 3DB 3DF
06 033 037 3D3 3D7
07 03B 03F 3CB 3CF
08 043 047 3C3 3C7
09 04B 04F 3BB 3BF
0A 053 057 3B3 3B7
0B 05B 05F 3AB 3AF
0C 063 067 3A3 3A7
0D 06B 06F 39B 39F
0E 073 077 393 397
0F 07B 07F 38B 38F
10 083 087 383 387
11 08B 08F 37B 37F
12 093 097 373 377
13 09B 09F 36B 36F
14 0A3 0A7 363 367
15 0AB 0AF 35B 35F
16 0B3 0B7 353 357
17 0BB 0BF 34B 34F
18 0C3 0C7 343 347
19 0CB 0CF 33B 33F
lA 0D3 097 333 337
1B 0DB 0DF 32B 32F
1C 0E3 0E7 323 327
1D 0EB 0EF 31B 31F
1E 0F3 0F7 313 317
1F 0FB 0FF 30B 30F

Appendix C: Reference tables for M-code programming 171

Class 3 instructions, continued
 Type JNC+ JC+ JNC- JC-
Distance
20 103 107 303 307
21 10B 10F 2FB 2FF
22 113 117 2F3 2F7
23 11B 11F 2EB 2EF
24 123 127 2E3 2E7
25 12B 12F 2DB 2DF
26 133 137 2D3 2D7
27 13B 13F 2CB 2CF
28 143 147 2C3 2C7
29 14B 14F 2BB 2BF
2A 153 157 2B3 2B7
2B 15B 15F 2AB 2AF
2C 163 167 2A3 2A7
2D 16B 16F 29B 29F
2E 173 177 293 297
2F 17B 17F 28B 28F
30 183 187 283 287
31 18B 18F 27B 27F
32 193 197 273 277
33 19B 19F 26B 26F
34 1A3 1A7 263 267
35 1AB 1AF 25B 25F
36 1B3 1B7 253 257
37 1BB 1BF 24B 24F
38 1C3 1C7 243 247
39 1CB 1CF 23B 23F
3A 1D3 197 233 237
3B 1DB 1DF 22B 22F
3C 1E3 1E7 223 227
3D 1EB 1EF 21B 21F
3E 1F3 1F7 213 217
3F 1FB 1FF 20B 20F
40 *** *** 203 207

Appendix D:

Hexadecimal and Binary numbers

This appendix gives a short explanation about hexadecimal and binary
numbers. For a more complete explanation, consult a textbook on computer
programming.

In both decimal, binary and hexadecimal number systems, each digit has a
value and a "weight". In the decimal system, the rightmost (least
significant) digit has the weight 1, the next digit has the weight 10, the
next 100 and so on.

In the hexadecimal number system we have 16 digits. The first 10 are the
same as in the decimal system, but then we have to start on the letters.
Thus, the hexadecimal digits are 0-9, A, B, C, D, E and F. The least
significant digit also has the weight 1, but the next digit has the weight 16, the
next 256, and so on - multiplying by 16 for each position.

In the binary system there are only two digits: 0 and 1. The least
significant digit has the weight 1, the next has the weight 2, the next has
the weight 4 and so on - we multiply by 2 for each position.

We can write the values up to 16 with one or two decimal digits, one
hexadecimal digit or four binary digits (bit).

Appendix D: Hexadecimal and Binary numbers 173

Decimal Hexadecimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Table 28, Decimal, Hexadecimal and Binary numbers

To convert a hexadecimal number to decimal, we take it digit by digit. We
multiply the weight of the digit with the value, and sum al1 these products.
For example, the hexadecimal number 3AE is 3 x 256 + 10 x 76 + 14 = 942.

To convert a decimal number to hexadecimal, we divide by decreasing
multiples of 16. For example, the decimal number 3572 divided by 256 =
13,95. This means that the third hexadecimal digit (with the weight 256) is
decimal 13, the hex digit "D". We calculate the remainder 3572 - 13 x 256 =
244. 244 / 16 = 15.25, thus the second hex digit (with the weight 16) is
decimal 15, hex "F'. The remainder is decimal 4, the same as the
hexadecimal digit "4". Thus, the hexadecimal equivalent of 3572 decimal is
the hexadecimal number DF4.

To convert a binary number to decimal, we also take it digit by digit. We
multiply the weight of the digit with the value, and sum all these products.
For example, the binary number 101101 is 1 x 32 + 0 x 16 + 1 x 8 + 1 x 4
+ 0 x 2 + 1 = 45.

To convert a decimal number to binary, we simply subtract decreasing
multiples of two. To convert the decimal number 145 to binary, we subtract
128, giving the remainder 17. Since 128 is 2 x 2 x 2 x 2 x 2 x 2 x 2, we
have the 7th binary digit is 1. We can now subtract 16, and since 16 is 2 x
2 x 2 x 2, the 4th bit is also 1. The remainder is 1, giving the 1st bit to
be 1. Altogether, the binary equivalent of 145 is 10010001.

174 Appendix D: Hexadecimal and Binary numbers

To convert between hexadecimal and binary numbers, simply convert one
hexadecimal digit to 4 bits or vice versa, using table 28 above. For
example, to convert 4EB7 to binary, simply look up digit by digit to find
0100 1110 1011 0111. To convert 1011010110 to hexadecimal, group the bits
in fours from the right end like this: 10 1101 0110. Each group is then one
hex digit, in this example, we find 1011010110 to be 2D6 hex.

Appendix E:

XROM numbers

This appendix gives the XROM number of all the functions in the HEPAX
module. It also gives the XROM ID no. of all external ROMs available at
the time of printing of this manual. Note that the HEPAX file system
automatically allocates an unused XROM ID no. to each block of HEPAX
memory, starting with 11d.

Some XROM ID numbers are used by two modules or more modules. Only
one of these may be plugged into the HP-41 at a time. Modules with two
XROM numbers are normally of the "8K" type.

XROM no. Module
01 Math Pac
02 Statistics Pac
03 Surveying Pac
04 Financial Analysis Pac
05 Standard Pac
06 Circuit Analysis
07 Structural (A)
07 HEPAX module
08 Stress Analysis
09 Home Management
10 Games
10 PPC ROM
10 Auto/Duplication ROM
11 Real Estate
12 Machine Design
13 Thermal and Trans.
14 Navigation Pac
15 Petroleum Fluids
16 Petroleum Fluids
17 Plotter ROM
18 Plotter ROM
19 Aviation
19 Clinical Lab.
19 Securities
19 Structural(B)
20 PPC ROM
21 Custom 8K

176 Appendix E: XROM numbers

21 Assembler 3
22 HP-IL Development ROM
23 Extended I/O
24 HP-IL Development ROM
25 Extended Functions
26 Time module
27 Optical Wand
28 HP-IL Control and Mass Storage
29 Printer
30 Card Reader
31 Custom 4K and 8K

The XROM numbers of the functions in the HEPAX module are:
07,00 -HEPAX lD 07,20 HINSCHR 07,40 CLRAM
07,01 HAPPCHR 07,21 HINSREC 07,41 CODE
07,02 HAPPREC 07,22 HPOSFL 07,42 COPYROM
07,03 HARCLRC 07,23 HPURFL 07,43 DECODE
07,04 HASROOM 07,24 HRCLPT 07,44 DECODYX
07,05 HCLFL 07,25 HRCLPTA 07,45 DISASM
07,06 HCRFLAS 07,26 HREADFL 07,46 HEPAX
07,07 HCRFLD 07,27 HRENAME 07,47 HEPAXA
07,08 HDELCHR 07,28 HSAVEA 07,48 HEXEDIT
07,09 HDELREC 07,29 HSAVEK 07,49 HPROMPT
07,10 HEPDIR 07,30 HSAVEP 07,50 RAMTOG
07,11 HEPDIRX 07,31 HSAVER 07,51 READROM
07,12 HEPROOM 07,32 HSAVERX 07,52 WRTROM
07,13 HFLSIZE 07,33 HSAVEX 07,53 XF
07,14 HGETA 07,34 HSEC 07,54 XFA
07,15 HGETK 07,35 HSEKPT
07,16 HGETR 07,36 HSEKPTA
07,17 HGETREC 07,37 HUNSEC
07,18 HGETRX 07,38 HWRTFL
07,19 HGETX 07,39 PRIVATE

Subject index
Absolute execute ..118 Function address table102, 145
Absolute go to ..118 Function name145
Absolute jumps ..119 Functions, non-programmable147
Address registers, CPU108 "Halfnut" calculator732
ALPHA register ...101 HEPAX disassembler117
ALPHA register handling routines..............151 HEPAX instructions125
Annunciators ..134 Hex codes..115
Arithmetic and logic instructions123 Hexadecimal numbers172
Arithmetic registers107 HEXEDIT ...115
Assembling ..115 HP-41
Bank switching ...96 internal structure 92
Battery and power instructions124 memory .. 92
BCAT ...95 HP-82104A magnetic card reader137
Beeper ...111,131 HP-82143A printer136
Binary numbers ..172 HP-82153A optical wand137
Block ..94, 95, 102 HP-82160A HP-IL, interface module . 142
Block catalog ...95 HP-82182A module139
Bugs, in the CPU ..115 HP-IL interface142
C register, in the CPU107,108 I/O handling instructions121
Calculating the code for a jump126 Instruction classes117
Card reader ...137 Internal structure 92
Carry flag... 111 Interrupt jump103
Central Processing Unit......................... 92,105 Jacobs/DeArras mnemonics117
Checksum ...104 Jump distance115
Class 0 instructions120 JUMP program126
 reference table166 Jump related instructions123
Class 1 instructions118,126 Jumps ..118
Class 2 instructions128 Keyboard handling
 reference table..169 instructions124
Class 3 instructions130 routines ..148
 reference table170 Keydown flag111
CPU ...92,105 M-code ...114
 "bugs" ..115 instruction classes117
 flags ...111 instructions117
 register connections106 Machine language114
 registers ...105 Magnetic card reader137
 return stack ..105 Main memory 93
 storage registers108 handling routines151
Crash ..116 Mantissa ...100
Developing your own ROM145 Memory and peripheral
Digits in C handling instructions123
 with display instructions131 MEMORY LOST103
Directly executing functions147 Message routines150
DISASM ..115 Messages from the HEPAX module ...158
Disassembling ..115 Miscellaneous routines152
Display handling ..134 Mnemonics115,117
 instructions ..124 Most significant digit100
 routines ..147 MSD ...100
End of the world ...139 NOMAS ...115
Error messages150,158 Non-programmable functions147
Errors, in M-code routines115 NOP ..121
Exponent ..100 Not Manufacturer Supported115
Extended memory ..93 Number of characters
FAT ...102,145 with display instructions131
Field, with display instructions134 Operating system93,96
FOCAL ..95 Optical wand137
Forty One Calculator Language95 Parameter instructions.........................120

Subject index 181

Peripherals ..93 XROM number102
Plug-in modules..93 XROM numbers175
Pointer instructions122 XS ..100
Pointers ...112
Port ..97
Port dependent jumps118, 120,152
Printer ...136
Program name ..145
Prompting ...146
RAM memory92,93
RAM SLCT ..125
READ DATA ...125
READ instructions175
Reference tables166
Register connections, CPU106
Register fields ..107
Registers, CPU ...93
Relative jumps118, 119, 130
Return points ..152
Revision number104
ROM
 blocks ..94
 character code132
 ID number ...161
 memory ..92
 name ..153
 developing your own145
Rotation, with display instructions134
Selecting
 display ...134
 magnetic card reader137
 optical wand ..137
 peripheral units126
 timer ..139
 user memory registers125
Special character132
Stack registers ..100
Status messages ..158
Status registers98,101
Stop over jumps119
Storage register instructions122
Storage registers, CPU108
Synthetic programming98
System addressed device95,97
System memory92,93
System subroutines147
Timer ...139
Tone generator ...131
Tone register instructions122
User groups ..116
User memory ...92,93
User memory registers125
User developed ROM145,153
Wand ...137
WRIT DATA ..125
X-ROM ...153
XROM ID number175

Function index

ALENG function52 HREADFL function20
AND function77 HRENAME function19
ANUM function53 HRESZFL program29
AROT function52 HSAVEA function42
ATOX function52 HSAVEK function42
BCAT function77 HSAVEP function...............................22
BCD-BIN function77 HSAVER function34
BIN-BCD function77 HSAVERX function35
CLKEYS function57 HSAVEX function36
CLRAM function66,70 HSEC function21
CLRGX function46 HSEKPT function33
CODE function75 HSEKPTA function33
COPYROM function61,66 HUNSEC function21
CTRAST function76 HWRTFL function20
DECODE function75 INSERT function78
DELETE function78 NOT function77
DISASM function67 OR function ..77
DISSST program67 PASN function50
HAPPCHR function39 PCLPS function56
HAPPREC function38 POSA function53
HARCLREC function40 PRIVATE function25
HASROOM function29 PSIZE function46
HCLFL function31 RAMTOG function66
HCRFLAS function............................28 RCLFLAG function48
HCRFLD function27 READROM function65
HDELCHR function39 REGMOVE function47
HDELREC function38 REGSWAP function47
HEPAX multi-function77 ROTYX function77
HEPDIR function17 SHIFTYX function77
HEPDIRX function18 ΣREG? function46
HEPROOM function18 SIZE? function46
HEXEDIT function69 STOFLAG function48
HFLSIZE function18 WRTROM function65
HGETA function42 XF multi-function45
HGETK function42 XOR function77
HGETR function35 XTOA function52
HGETREC function40 X<>F function48
HGETRX function35 X=NN function55
HGETX function36 X≠NN function55
HINSCHR function39 X<NN function55
HINSREC function38 X<=NN function55
HPOSFL function39 X>NN function55
HPROMPT function76 X>=NN function55
HPURFL function19 X+Y function77
HRCLPT function34 X-$ function78
HRCLPTA function19,34 Y-X function77

	Contents
	List of figures
	List of tables
	Part III:
	The inner secrets of the HP-41
	HP-41 internal structure
	HP-41 memory
	User memory
	System memory
	User memory vs. system memory
	Bank switching

	The operating system
	The HEPAX module
	The status registers
	The stack registers
	The ALPHA register
	Other parts of the status registers

	ROM block Structure
	HP-41 microprocessor

	Introduction to the CPU
	More about the structure of registers
	The arithmetic registers (A, B, C)
	The storage registers (M, N, G)
	The address registers (PC, STK)
	Other registers and flags
	The KY register
	The ST register and the CPU flags
	The T register
	The pointers
	Part IV:
	M-code programming
	Introduction to M-code
	Why M-code?
	How do I program in M-code?
	Why doesn't my routine work?
	CPU "bugs"
	Not Manufacturer Supported
	"Crashes"

	The M-code instructions

	The structure of M-code instructions
	About jumps
	Absolute jumps
	Relative jumps
	Port dependent jumps

	Class 0 instructions
	Parameter instructions
	Special instructions
	Accessing user memory registers

	Class 1 instructions
	Class 2 instructions
	Class 3 instructions
	M-code for peripheral units

	Using the tone generator
	ROM character codes
	Using the display
	Using the HP-82143A printer
	The optical wand
	Magnetic card reader
	The Timer
	The HP-IL interface
	Developing your own ROM

	Function and program names
	Prompting
	Non-programmable functions

	Selected HP-41 system subroutines
	Display handling routines
	Keyboard handling routines
	Message routines
	ALPHA register handling routines
	Main memory handling routines
	Return points
	Miscellaneous routines
	Using port dependent jumps

	Example of a user-developed ROM
	Appendices
	Messages from the HEPAX module
	Function overview
	Reference tables
	for M-code programming
	Class 0 parameter instructions
	Class 0 parameter instructions, continued
	Class 0 special instructions
	Class 0 special instructions, continued
	Class 1 instructions
	Class 2 instructions
	Class 3 instructions
	Class 3 instructions, continued

	Hexadecimal and Binary numbers
	XROM numbers
	Subject index
	Function index

